Research Article
BibTex RIS Cite

Challenging Synthesis of a Highly Strained π-Extended Viologen-Based Cyclophane

Year 2025, Volume: 18 Issue: 1, 312 - 325, 28.03.2025
https://doi.org/10.18185/erzifbed.1650046

Abstract

The challenging synthesis of a highly strained π-extended viologen-based cyclophane is achieved through a straightforward four-step process, utilizing simple and readily accessible chemicals. The desired product was characterized by 1H and 13C NMR spectroscopy, HRMS (ESI), and the solid-state structure was determined by single-crystal X-ray analysis. To demonstrate the versatility of this new platform due by the extended viologen units, further photophysical and electrochemical property studies, including photoluminescence and altered redox potentials, are being conducted in our laboratories.

Ethical Statement

There are no ethical issues regarding the publication of this study.

Supporting Institution

There are no conflicts to declare. The author also declares no competing financial interest.

Thanks

The author thanks to Prof Sir Fraser Stoddart for his endless support in the discussion of the obtained results, sage advice, insightful criticism and discussion, and patient encouragement during this work. The author greatly thanks to his wife Mine and sons Metehan Arda and Mert Kaan for willingly giving him time to complete this work.

References

  • [1] Kotha, S., Shirbhate, M. E., & Waghule, G. T. (2015). Selected synthetic strategies to cyclophanes. Beilstein Journal of Organic Chemistry, 11, 1274-1331.
  • [2] Berville, M., Karmazin, L., Wytko, J. A., & Weiss, J. (2015). Viologen cyclophanes: redox controlled host–guest interactions. Chemical Communications, 51, 15772-15775.
  • [3] Dale, E. J., Ferris, D. P., Vermeulen, N. A., Henkelis, J. J., Popovs, I., Juríček, M., Barnes, J. C., Schneebeli, S. T., & Stoddart, J. F. (2016). Cooperative reactivity in an extended-viologen-based cyclophane. Journal of the American Chemical Society, 138(11), 3667-3670.
  • [4] Li, N., Li, Y., Wang, Z., Cao, T., Liu, C., Wang, H. Li, G., & He, G. (2024). Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Angewandte Chemie International Edition, 63(47), e202410525.
  • [5] Hassan, Z., Lahann, J., Bräse, S. (2024). Cyclophanes as Emerging Materials — From Synthesis To Functions. Advanced Functional Materials, 34(47), 2410027.
  • [6] Han, Z., Yuan, H., Zhang, H., Zhang, Y., Lv, J., Zhang, X., Wang, Z., Li, N., Liang, C., Yan, N., Maximov, M., Huang, Y., & He, H. (2025). Three-Dimensional Printable Viologen-Based Ionogel for Visible Sensing and Display, Chinese Chemical Society Chemistry, 7, 854-866.
  • [7] Szcześniak, P. & Furman, B. (2023). Diversity-oriented synthesis of medium-sized cyclophanes via the photo-fries rearrangement of N-aryl lactams, Reaction Chemistry and Engineering, 8, 1923-1929.
  • [8] Li, Y., Li, N., Li, G., Yi, Q., Zhang, M., Zhang, L. Guo, Q.-H. & He, G. (2023). The Green Box: Selenoviologen-Based Tetracationic Cyclophane for Electrochromism, Host–Guest Interactions, and Visible-Light Photocatalysis. Journal of the American Chemical Society, 145(16), 9118-9128.
  • [9] Stoddart, J. F., Barnes, J. C. & Juri, M. (2016). Tetracationic cyclophanes and their use in the sequestration of polyaromatic hydrocarbons by way of complexation. United States Patent, US9290495B2.
  • [10] Sun, S.-K., Wang, H.-F. & Yan, X.-P. (2018). Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Accounts of Chemical Research, 51(5), 1131-1143.
  • [11] Yang, Y., Liu, D., Song, M., Shi, D., Liu, B., Cheng, K., Lu, Y., Liu, H., Yang, M., Wang, W., Li, J., & Wei, J. (2017). Facile Synthesis of p-Extended Viologens: Electron-Deficient Polycyclic Aza-aromatics. Chemistry A European Journal, 23(31), 7409-7413.
  • [12] Dale, E. J., Vermeulen, N. A., Juríček, M., Barnes, J. C., Young, R. M., Wasielewski, M,. R. & Stoddart, J. F. (2016). Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes, Accounts of Chemical Research, 49(2), 262-273.
  • [13] Ghasemabadi, P. G., Tieguang, Y., & Bodwell, G. J. (2015). Cyclophanes containing large polycyclic aromatic hydrocarbons, Chemical Society Reviews, 44, 6494-6518.
  • [14] Watson, M. D., Jäckel, F., Severin, N., Rabe, J. P., & Müllen K. (2004). A Hexa-peri-hexabenzocoronene Cyclophane:  An Addition to the Toolbox for Molecular Electronics, Journal of the American Chemical Society, 126(5), 1402-1407.

Yüksek Gerilimli π-Uzamış Viologen-Bazlı Siklofanın Zorlu Sentezi

Year 2025, Volume: 18 Issue: 1, 312 - 325, 28.03.2025
https://doi.org/10.18185/erzifbed.1650046

Abstract

Yüksek gerilimli π-uzamış viologen-bazlı siklofanın zorlu sentezi, basit ve kolayca erişilebilen kimyasallar kullanılarak dört adımlı süreçle gerçekleştirilmiştir. Elde edilen nihai ürün, 1H ve 13C NMR spektroskopisi, HRMS (ESI) ile karakterize edilmiş ve katı hal yapısı tek kristal X-ışını analizi ile belirlenmiştir. Uzatılmış viologen birimleri sayesinde bu yeni platformun çok yönlülüğünü göstermek amacıyla, fotolüminesans ve değişen redoks potansiyelleri de dahil olmak üzere daha fazla fotofiziksel ve elektrokimyasal özellik çalışmaları laboratuvarlarımızda hala devam etmektedir.

References

  • [1] Kotha, S., Shirbhate, M. E., & Waghule, G. T. (2015). Selected synthetic strategies to cyclophanes. Beilstein Journal of Organic Chemistry, 11, 1274-1331.
  • [2] Berville, M., Karmazin, L., Wytko, J. A., & Weiss, J. (2015). Viologen cyclophanes: redox controlled host–guest interactions. Chemical Communications, 51, 15772-15775.
  • [3] Dale, E. J., Ferris, D. P., Vermeulen, N. A., Henkelis, J. J., Popovs, I., Juríček, M., Barnes, J. C., Schneebeli, S. T., & Stoddart, J. F. (2016). Cooperative reactivity in an extended-viologen-based cyclophane. Journal of the American Chemical Society, 138(11), 3667-3670.
  • [4] Li, N., Li, Y., Wang, Z., Cao, T., Liu, C., Wang, H. Li, G., & He, G. (2024). Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Angewandte Chemie International Edition, 63(47), e202410525.
  • [5] Hassan, Z., Lahann, J., Bräse, S. (2024). Cyclophanes as Emerging Materials — From Synthesis To Functions. Advanced Functional Materials, 34(47), 2410027.
  • [6] Han, Z., Yuan, H., Zhang, H., Zhang, Y., Lv, J., Zhang, X., Wang, Z., Li, N., Liang, C., Yan, N., Maximov, M., Huang, Y., & He, H. (2025). Three-Dimensional Printable Viologen-Based Ionogel for Visible Sensing and Display, Chinese Chemical Society Chemistry, 7, 854-866.
  • [7] Szcześniak, P. & Furman, B. (2023). Diversity-oriented synthesis of medium-sized cyclophanes via the photo-fries rearrangement of N-aryl lactams, Reaction Chemistry and Engineering, 8, 1923-1929.
  • [8] Li, Y., Li, N., Li, G., Yi, Q., Zhang, M., Zhang, L. Guo, Q.-H. & He, G. (2023). The Green Box: Selenoviologen-Based Tetracationic Cyclophane for Electrochromism, Host–Guest Interactions, and Visible-Light Photocatalysis. Journal of the American Chemical Society, 145(16), 9118-9128.
  • [9] Stoddart, J. F., Barnes, J. C. & Juri, M. (2016). Tetracationic cyclophanes and their use in the sequestration of polyaromatic hydrocarbons by way of complexation. United States Patent, US9290495B2.
  • [10] Sun, S.-K., Wang, H.-F. & Yan, X.-P. (2018). Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Accounts of Chemical Research, 51(5), 1131-1143.
  • [11] Yang, Y., Liu, D., Song, M., Shi, D., Liu, B., Cheng, K., Lu, Y., Liu, H., Yang, M., Wang, W., Li, J., & Wei, J. (2017). Facile Synthesis of p-Extended Viologens: Electron-Deficient Polycyclic Aza-aromatics. Chemistry A European Journal, 23(31), 7409-7413.
  • [12] Dale, E. J., Vermeulen, N. A., Juríček, M., Barnes, J. C., Young, R. M., Wasielewski, M,. R. & Stoddart, J. F. (2016). Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes, Accounts of Chemical Research, 49(2), 262-273.
  • [13] Ghasemabadi, P. G., Tieguang, Y., & Bodwell, G. J. (2015). Cyclophanes containing large polycyclic aromatic hydrocarbons, Chemical Society Reviews, 44, 6494-6518.
  • [14] Watson, M. D., Jäckel, F., Severin, N., Rabe, J. P., & Müllen K. (2004). A Hexa-peri-hexabenzocoronene Cyclophane:  An Addition to the Toolbox for Molecular Electronics, Journal of the American Chemical Society, 126(5), 1402-1407.
There are 14 citations in total.

Details

Primary Language English
Subjects Supramolecular Chemistry
Journal Section Makaleler
Authors

M. Mustafa Çetin 0000-0002-6443-0232

Early Pub Date March 26, 2025
Publication Date March 28, 2025
Submission Date March 3, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Çetin, M. M. (2025). Challenging Synthesis of a Highly Strained π-Extended Viologen-Based Cyclophane. Erzincan University Journal of Science and Technology, 18(1), 312-325. https://doi.org/10.18185/erzifbed.1650046