Research Article
BibTex RIS Cite

First-Ever Use of LiMn₂O₄ Cathode in State-of-the-Art Ammonium-Ion Batteries: Unlocking a New Ametal Charge Carrier

Year 2025, Volume: 18 Issue: 2, 431 - 450, 31.08.2025
https://doi.org/10.18185/erzifbed.1673054

Abstract

The pursuit of cost-effective, high-performance, and eco-friendly energy storage solutions has driven increasing interest in aqueous ammonium-ion batteries. These systems provide enhanced safety, sustainability, and affordability, attributed to the low molar mass and small hydrated ionic radius of ammonium ions. However, identifying a cathode material capable of reversible ammonium-ion storage in aqueous electrolytes remains a key challenge. This study explores lithium manganese oxide (LiMn₂O₄) as a promising cathode material for ammonium-ion batteries. The spinel LiMn₂O₄ structure, known for its cubic symmetry and interconnected 3D ion-diffusion channels, ensures efficient charge transport and robust electrochemical performance. Additionally, its low-cost raw materials and environmental advantages make it an attractive alternative to conventional transition metal oxides. With a theoretical capacity of ~148 mAh g⁻¹, LiMn₂O₄ exhibits substantial specific capacity, contributing to improved battery energy density. The material was synthesized via a high-temperature solid-state reaction, and X-ray diffraction (XRD) confirmed the formation of a stable orthorhombic structure. Electrochemical analysis using cyclic voltammetry indicated a two-step lithium extraction process in ammonium-ion electrolytes. As cycling progressed, redox peaks associated with ammonium-ion insertion and extraction became more defined, highlighting the material's capability for efficient and reversible charge storage. Galvanostatic charge-discharge tests revealed that the MnO₂-based electrode delivered a stable specific capacity of approximately 47 mAh g⁻¹ during NH₄⁺ intercalation/de-intercalation. The study demonstrates that LiMn₂O₄ effectively supports ammonium-ion storage, offering a sustainable and high-performance cathode option for next-generation aqueous batteries. These findings provide crucial insights into the material’s electrochemical behavior and potential for advancing ammonium-ion battery technology.

References

  • [1] Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49.
  • [2] Zou, C., Zhao, Q., Zhang, G., & Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B, 3(1), 1-11.
  • [3] Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, 87, 96-105.
  • [4] Wu, Y., Wang, W., Ming, J., Li, M., Xie, L., He, X., ... & Wu, Y. (2019). An exploration of new energy storage system: High energy density, high safety, and fast charging lithium ion battery. Advanced Functional Materials, 29(1), 1805978.
  • [5] Sayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable energy and energy storage systems. Energies, 16(3), 1415.
  • [6] Mitali, J., Dhinakaran, S., & Mohamad, A. (2022). Energy storage systems: A review. Energy Storage and Saving, 1(3), 166-216.
  • [7] Christen, T., & Carlen, M. W. (2000). Theory of Ragone plots. Journal of Power Sources, 91(2), 210-216.
  • [8] Christen, T., & Ohler, C. (2002). Optimizing energy storage devices using Ragone plots. Journal of Power Sources, 110(1), 107-116.
  • [9] Pell, W., & Conway, B. (1996). Quantitative modeling of factors determining Ragone plots for batteries and electrochemical capacitors. Journal of Power Sources, 63(2), 255-266.
  • [10] Larcher, D., & Tarascon, J.-M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 7(1), 19-29.
  • [11] Goodenough, J. B. (2013). Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research, 46(5), 1053-1061.
  • [12] Olabi, A. G., Abbas, Q., Shinde, P. A., & Abdelkareem, M. A. (2023). Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy, 266, 126408.
  • [13] Boddula, R., Pothu, R., & Asiri, A. M. (2020). Rechargeable Batteries: History, Progress, and Applications. John Wiley & Sons.
  • [14] Nekahi, A., Madikere Raghunatha Reddy, A. K., Li, X., Deng, S., & Zaghib, K. (2025). Rechargeable Batteries for the Electrification of Society: Past, Present, and Future. Electrochemical Energy Reviews, 8(1), 1-30.
  • [15] Liang, Y., Zhao, C.-Z., Yuan, H., Chen, Y., Zhang, W., Huang, J.-Q., ... & Chueh, Y.-L. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6-32.
  • [16] Mauger, A., & Julien, C. (2017). Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics, 23, 1933-1947.
  • [17] Wu, X., Song, K., Zhang, X., Hu, N., Li, L., Li, W., ... & Zhang, H. (2019). Safety issues in lithium ion batteries: Materials and cell design. Frontiers in Energy Research, 7, 65.
  • [18] Han, J., Varzi, A., & Passerini, S. (2022). The emergence of aqueous ammonium-ion batteries. Angewandte Chemie, 134(14), e202115046.
  • [19] Wang, Y., & Kuchena, S. F. (2022). Recent progress in aqueous ammonium-ion batteries. ACS Omega, 7(38), 33732-33748.
  • [20] Zhang, R., Wang, S., Chou, S., & Jin, H. (2022). Research development on aqueous ammonium-ion batteries. Advanced Functional Materials, 32(25), 2112179.
  • [21] Tekin, B., Sevinc, S., Morcrette, M., & Demir-Cakan, R. (2017). A new sodium-based aqueous rechargeable battery system: The special case of Na0.44MnO2/dissolved sodium polysulfide. Energy Technology, 5(12), 2182-2188.
  • [22] Sevinc, S., Tekin, B., Ata, A., Morcrette, M., Perrot, H., Sel, O., & Demir-Cakan, R. (2019). In-situ tracking of NaFePO4 formation in aqueous electrolytes and its electrochemical performances in Na-ion/polysulfide batteries. Journal of Power Sources, 412, 55-62.
  • [23] Pahari, D., & Puravankara, S. (2020). Greener, safer, and sustainable batteries: An insight into aqueous electrolytes for sodium-ion batteries. ACS Sustainable Chemistry & Engineering, 8(29), 10613-10625.
  • [24] Chen, S., Zhang, M., Zou, P., Sun, B., & Tao, S. (2022). Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy & Environmental Science, 15(5), 1805-1839.
  • [25] Zhang, H., Liu, X., Li, H., Hasa, I., & Passerini, S. (2021). Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angewandte Chemie International Edition, 60(2), 598-616.
  • [26] Dell, R. (1996). Aqueous electrolyte batteries. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 354(1712), 1515-1527.
  • [27] Zhang, Q., Yang, Z., Ji, H., Zeng, X., Tang, Y., Sun, D., & Wang, H. (2021). Issues and rational design of aqueous electrolyte for Zn-ion batteries. SusMat, 1(3), 432-447.
  • [28] Li, X., Liu, P., Han, C., Cai, T., Cui, Y., Xing, W., & Zhi, C. (2025). Corrosion of metallic anodes in aqueous batteries. Energy & Environmental Science.
  • [29] Sun, Y., Yin, B., Yang, J., Ding, Y., Li, M., Li, H., ... & Ma, T. (2023). Ammonium-ion energy storage devices for real-life deployment: Storage mechanism, electrode design and system integration. Energy & Environmental Science, 16(12), 5568-5604.
  • [30] Zheng, R., Li, Y., Yu, H., Zhang, X., Yang, D., Yan, L., ... & Su, B. L. (2023). Ammonium ion batteries: Material, electrochemistry and strategy. Angewandte Chemie, 135(23), e202301629.
  • [31] Tawalbeh, M., Murtaza, S. Z., Al-Othman, A., Alami, A. H., Singh, K., & Olabi, A. G. (2022). Ammonia: A versatile candidate for the use in energy storage systems. Renewable Energy, 194, 955-977.
  • [32] Tian, Z. (2024). Designing Advanced Aqueous Ammonium-Ion Batteries by Hydrogen-Bond Chemistry.
  • [33] Li, C., Yan, W., Liang, S., Wang, P., Wang, J., Fu, L., ... & Huang, W. (2019). Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 4(4), 991-998.
  • [34] Xing, J., Fu, X., Guan, S., Zhang, Y., Lei, M., & Peng, Z. (2021). Novel KV-Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 543, 148843.
  • [35] Li, S., Xia, M., Xiao, C., Zhang, X., Yu, H., Zhang, L., & Shu, J. (2021). Common ion effect enhanced Prussian blue analogues for aqueous ammonium ion storage. Dalton Transactions, 50(19), 6520-6527.
  • [36] Zhang, Y., An, Y., Yin, B., Jiang, J., Dong, S., Dou, H., & Zhang, X. (2019). A novel aqueous ammonium dual-ion battery based on organic polymers. Journal of Materials Chemistry A, 7(18), 11314-11320.
  • [37] Zhang, Y., Yao, Q., Sun, Y., Zhao, Y., & Niu, Y. (2024). Multifunctional Porous Organic Polymer Anode with Desired Redox Potential and Capacity for High-Performance Aqueous Sodium-Ion and Ammonium-Ion Batteries. ACS Applied Materials & Interfaces, 16(40), 53688-53696.
  • [38] Shi, M., Zhang, Y., Zhou, X., Li, Y., Xiao, S., Liu, S., ... & Li, Y. (2023). A high-energy/power and ultra-stable aqueous ammonium ion microbattery based on amorphous/crystalline dual-phase layered metal oxides. Chemical Engineering Journal, 464, 142600.
  • [39] Song, Y., Pan, Q., Lv, H., Yang, D., Qin, Z., Zhang, M. Y., ... & Liu, X. X. (2021). Ammonium-ion storage using electrodeposited manganese oxides. Angewandte Chemie, 133(11), 5782-5786.
  • [40] Erraji, A., Masrour, R., & Xu, L. (2024). Ab initio study of LiMn2O4 cathode: Electrochemical and optical properties for Li-ion batteries and optoelectronic devices. Ionics, 30(12), 7917-7928.
  • [41] Ghosh, S., Bhattacharjee, U., Bhowmik, S., and Martha, S.K. (2022). A Review on High-Capacity and High-Voltage Cathodes for Next-Generation Lithium-ion Batteries. Journal of Energy and Power Technology, 4(1), 2-59.
  • [42] Tiruvannamalai Annamalai, A. K. (2007). Chemical, structural, and electrochemical characterization of 5 V spinel and complex layered oxide cathodes of lithium ion batteries.
  • [43] Jia, L. (2016). Spinel-based cathode materials for high energy/power lithium ion batteries. National University of Singapore (Singapore).
  • [44] Stoyanova, R., Koleva, V., & Stoyanova, A. (2019). Lithium versus Mono/Polyvalent ion intercalation: Hybrid metal ion systems for energy storage. The Chemical Record, 19(2-3), 474-501.
  • [45] Wu, H., Luo, S., Wang, H., Li, L., Fang, Y., Zhang, F., ... & Yuan, W. (2024). A review of anode materials for dual-ion batteries. Nano-Micro Letters, 16(1), 252.
  • [46] Zhang, M., Sun, C., Li, J., Shi, C., Li, X., & Zhao, B. (2025). Suppressed Mn dissolution behavior to improve cycling performance of Cr-modified Li1-xMn2O4 electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 136283.
  • [47] Wang, F., Yu, H.-C., Chen, M.-H., Wu, L., Pereira, N., Thornton, K., ... & Graetz, J. (2012). Tracking lithium transport and electrochemical reactions in nanoparticles. Nature Communications, 3(1), 1201.
  • [48] Aikiyo, H., Nakane, K., Ogata, N., & Ogihara, T. (2001). Effect of particle morphology on electrochemical property of LiMn2O4. Journal of the Ceramic Society of Japan, 109(1270), 506-510.
  • [49] Shin, S. Y. (2015). Electrochemical and mechanical properties of LiMn2O4 according to particle morphology. Seoul National University.
  • [50] Kondo, Y., Abe, T., & Yamada, Y. (2022). Kinetics of interfacial ion transfer in lithium-ion batteries: Mechanism understanding and improvement strategies. ACS Applied Materials & Interfaces, 14(20), 22706-22718.
  • [51] Chandra, A., & Bagchi, B. (2000). Frequency dependence of ionic conductivity of electrolyte solutions. The Journal of Chemical Physics, 112(4), 1876-1886.
  • [52] Liu, X., Fan, K., Huang, X., Ge, J., Liu, Y., & Kang, H. (2024). Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chemical Engineering Journal, 151625.
  • [53] Wright, M. R. (2007). An introduction to aqueous electrolyte solutions. John Wiley & Sons.
  • [54] Picálek, J., & Kolafa, J. (2007). Molecular dynamics study of conductivity of ionic liquids: The Kohlrausch law. Journal of Molecular Liquids, 134(1-3), 29-33.
  • [55] El-Latif, E. I. A., Alahmadi, M., Kebede, M. A., Phasha, M., Hameed, T. A., Khairy, Y., ... & Sheha, E. (2024). Modeling the Diffusion Coefficient of Charge Carriers in Batteries Using the Randles-Sevcik Equation. Available at SSRN 4749003.
  • [56] Magnussen, O. M., & Groß, A. (2019). Toward an atomic-scale understanding of electrochemical interface structure and dynamics. Journal of the American Chemical Society, 141(12), 4777-4790.

LiMn₂O₄ katodun son teknoloji amonyum iyon pillerde ilk kullanımı: yeni bir ametal şarj taşıyıcısının kilidini açma

Year 2025, Volume: 18 Issue: 2, 431 - 450, 31.08.2025
https://doi.org/10.18185/erzifbed.1673054

Abstract

Uygun maliyetli, yüksek performanslı ve çevre dostu enerji depolama çözümlerinin arayışı, sulu amonyum iyon pillere olan ilginin artmasına neden oldu. Bu sistemler, amonyum iyonlarının düşük molar kütlesine ve küçük hidratlı iyonik yarıçapına atfedilen gelişmiş güvenlik, sürdürülebilirlik ve satın alınabilirlik sağlar. Bununla birlikte, sulu elektrolitlerde tersinir amonyum-iyon depolaması yapabilen bir katot malzemesinin tanımlanması önemli bir zorluk olmaya devam etmektedir. Bu çalışma, amonyum-iyon piller için umut verici bir katot malzemesi olarak lityum manganez oksidi (LiMn₂O₄) araştırıyor. Kübik simetrisi ve birbirine bağlı 3D iyon difüzyon kanalları ile bilinen spinel LiMn₂O₄ yapısı, verimli yük taşınması ve sağlam elektrokimyasal performans sağlar. Ek olarak, düşük maliyetli hammaddeleri ve çevresel avantajları, onu geleneksel geçiş metali oksitlerine çekici bir alternatif haline getirmektedir. ~148 mAh g⁻¹ teorik kapasiteye sahip LiMn₂O₄, önemli bir özgül kapasite sergileyerek pil enerji yoğunluğunun iyileştirilmesine katkıda bulunur. Materyal, yüksek sıcaklıkta bir katı hal reaksiyonu yoluyla sentezlendi ve X-ışını kırınımı (XRD), kararlı bir ortorombik yapının oluşumunu doğruladı. Döngüsel voltametri kullanılarak yapılan elektrokimyasal analiz, amonyum-iyon elektrolitlerde iki aşamalı bir lityum ekstraksiyon işlemini gösterdi. Döngü ilerledikçe, amonyum iyonu ekleme ve çıkarma ile ilişkili redoks tepe noktaları daha belirgin hale geldi ve malzemenin verimli ve geri dönüşümlü şarj depolama kapasitesini vurguladı. Galvanostatik yük-deşarj testleri, MnO₂ bazlı elektrotun NH₄⁺ interkalasyon/de-interkalasyon sırasında yaklaşık 47 mAh g⁻¹'lik kararlı bir özgül kapasite sağladığını ortaya koydu. Çalışma, LiMn₂O₄'nin amonyum iyon depolamayı etkili bir şekilde desteklediğini ve yeni nesil sulu piller için sürdürülebilir ve yüksek performanslı bir katot seçeneği sunduğunu gösteriyor. Bu bulgular, malzemenin elektrokimyasal davranışı ve amonyum-iyon pil teknolojisini ilerletme potansiyeli hakkında önemli bilgiler sağlıyor.

References

  • [1] Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49.
  • [2] Zou, C., Zhao, Q., Zhang, G., & Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B, 3(1), 1-11.
  • [3] Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, 87, 96-105.
  • [4] Wu, Y., Wang, W., Ming, J., Li, M., Xie, L., He, X., ... & Wu, Y. (2019). An exploration of new energy storage system: High energy density, high safety, and fast charging lithium ion battery. Advanced Functional Materials, 29(1), 1805978.
  • [5] Sayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable energy and energy storage systems. Energies, 16(3), 1415.
  • [6] Mitali, J., Dhinakaran, S., & Mohamad, A. (2022). Energy storage systems: A review. Energy Storage and Saving, 1(3), 166-216.
  • [7] Christen, T., & Carlen, M. W. (2000). Theory of Ragone plots. Journal of Power Sources, 91(2), 210-216.
  • [8] Christen, T., & Ohler, C. (2002). Optimizing energy storage devices using Ragone plots. Journal of Power Sources, 110(1), 107-116.
  • [9] Pell, W., & Conway, B. (1996). Quantitative modeling of factors determining Ragone plots for batteries and electrochemical capacitors. Journal of Power Sources, 63(2), 255-266.
  • [10] Larcher, D., & Tarascon, J.-M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 7(1), 19-29.
  • [11] Goodenough, J. B. (2013). Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research, 46(5), 1053-1061.
  • [12] Olabi, A. G., Abbas, Q., Shinde, P. A., & Abdelkareem, M. A. (2023). Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy, 266, 126408.
  • [13] Boddula, R., Pothu, R., & Asiri, A. M. (2020). Rechargeable Batteries: History, Progress, and Applications. John Wiley & Sons.
  • [14] Nekahi, A., Madikere Raghunatha Reddy, A. K., Li, X., Deng, S., & Zaghib, K. (2025). Rechargeable Batteries for the Electrification of Society: Past, Present, and Future. Electrochemical Energy Reviews, 8(1), 1-30.
  • [15] Liang, Y., Zhao, C.-Z., Yuan, H., Chen, Y., Zhang, W., Huang, J.-Q., ... & Chueh, Y.-L. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6-32.
  • [16] Mauger, A., & Julien, C. (2017). Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics, 23, 1933-1947.
  • [17] Wu, X., Song, K., Zhang, X., Hu, N., Li, L., Li, W., ... & Zhang, H. (2019). Safety issues in lithium ion batteries: Materials and cell design. Frontiers in Energy Research, 7, 65.
  • [18] Han, J., Varzi, A., & Passerini, S. (2022). The emergence of aqueous ammonium-ion batteries. Angewandte Chemie, 134(14), e202115046.
  • [19] Wang, Y., & Kuchena, S. F. (2022). Recent progress in aqueous ammonium-ion batteries. ACS Omega, 7(38), 33732-33748.
  • [20] Zhang, R., Wang, S., Chou, S., & Jin, H. (2022). Research development on aqueous ammonium-ion batteries. Advanced Functional Materials, 32(25), 2112179.
  • [21] Tekin, B., Sevinc, S., Morcrette, M., & Demir-Cakan, R. (2017). A new sodium-based aqueous rechargeable battery system: The special case of Na0.44MnO2/dissolved sodium polysulfide. Energy Technology, 5(12), 2182-2188.
  • [22] Sevinc, S., Tekin, B., Ata, A., Morcrette, M., Perrot, H., Sel, O., & Demir-Cakan, R. (2019). In-situ tracking of NaFePO4 formation in aqueous electrolytes and its electrochemical performances in Na-ion/polysulfide batteries. Journal of Power Sources, 412, 55-62.
  • [23] Pahari, D., & Puravankara, S. (2020). Greener, safer, and sustainable batteries: An insight into aqueous electrolytes for sodium-ion batteries. ACS Sustainable Chemistry & Engineering, 8(29), 10613-10625.
  • [24] Chen, S., Zhang, M., Zou, P., Sun, B., & Tao, S. (2022). Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy & Environmental Science, 15(5), 1805-1839.
  • [25] Zhang, H., Liu, X., Li, H., Hasa, I., & Passerini, S. (2021). Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angewandte Chemie International Edition, 60(2), 598-616.
  • [26] Dell, R. (1996). Aqueous electrolyte batteries. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 354(1712), 1515-1527.
  • [27] Zhang, Q., Yang, Z., Ji, H., Zeng, X., Tang, Y., Sun, D., & Wang, H. (2021). Issues and rational design of aqueous electrolyte for Zn-ion batteries. SusMat, 1(3), 432-447.
  • [28] Li, X., Liu, P., Han, C., Cai, T., Cui, Y., Xing, W., & Zhi, C. (2025). Corrosion of metallic anodes in aqueous batteries. Energy & Environmental Science.
  • [29] Sun, Y., Yin, B., Yang, J., Ding, Y., Li, M., Li, H., ... & Ma, T. (2023). Ammonium-ion energy storage devices for real-life deployment: Storage mechanism, electrode design and system integration. Energy & Environmental Science, 16(12), 5568-5604.
  • [30] Zheng, R., Li, Y., Yu, H., Zhang, X., Yang, D., Yan, L., ... & Su, B. L. (2023). Ammonium ion batteries: Material, electrochemistry and strategy. Angewandte Chemie, 135(23), e202301629.
  • [31] Tawalbeh, M., Murtaza, S. Z., Al-Othman, A., Alami, A. H., Singh, K., & Olabi, A. G. (2022). Ammonia: A versatile candidate for the use in energy storage systems. Renewable Energy, 194, 955-977.
  • [32] Tian, Z. (2024). Designing Advanced Aqueous Ammonium-Ion Batteries by Hydrogen-Bond Chemistry.
  • [33] Li, C., Yan, W., Liang, S., Wang, P., Wang, J., Fu, L., ... & Huang, W. (2019). Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 4(4), 991-998.
  • [34] Xing, J., Fu, X., Guan, S., Zhang, Y., Lei, M., & Peng, Z. (2021). Novel KV-Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 543, 148843.
  • [35] Li, S., Xia, M., Xiao, C., Zhang, X., Yu, H., Zhang, L., & Shu, J. (2021). Common ion effect enhanced Prussian blue analogues for aqueous ammonium ion storage. Dalton Transactions, 50(19), 6520-6527.
  • [36] Zhang, Y., An, Y., Yin, B., Jiang, J., Dong, S., Dou, H., & Zhang, X. (2019). A novel aqueous ammonium dual-ion battery based on organic polymers. Journal of Materials Chemistry A, 7(18), 11314-11320.
  • [37] Zhang, Y., Yao, Q., Sun, Y., Zhao, Y., & Niu, Y. (2024). Multifunctional Porous Organic Polymer Anode with Desired Redox Potential and Capacity for High-Performance Aqueous Sodium-Ion and Ammonium-Ion Batteries. ACS Applied Materials & Interfaces, 16(40), 53688-53696.
  • [38] Shi, M., Zhang, Y., Zhou, X., Li, Y., Xiao, S., Liu, S., ... & Li, Y. (2023). A high-energy/power and ultra-stable aqueous ammonium ion microbattery based on amorphous/crystalline dual-phase layered metal oxides. Chemical Engineering Journal, 464, 142600.
  • [39] Song, Y., Pan, Q., Lv, H., Yang, D., Qin, Z., Zhang, M. Y., ... & Liu, X. X. (2021). Ammonium-ion storage using electrodeposited manganese oxides. Angewandte Chemie, 133(11), 5782-5786.
  • [40] Erraji, A., Masrour, R., & Xu, L. (2024). Ab initio study of LiMn2O4 cathode: Electrochemical and optical properties for Li-ion batteries and optoelectronic devices. Ionics, 30(12), 7917-7928.
  • [41] Ghosh, S., Bhattacharjee, U., Bhowmik, S., and Martha, S.K. (2022). A Review on High-Capacity and High-Voltage Cathodes for Next-Generation Lithium-ion Batteries. Journal of Energy and Power Technology, 4(1), 2-59.
  • [42] Tiruvannamalai Annamalai, A. K. (2007). Chemical, structural, and electrochemical characterization of 5 V spinel and complex layered oxide cathodes of lithium ion batteries.
  • [43] Jia, L. (2016). Spinel-based cathode materials for high energy/power lithium ion batteries. National University of Singapore (Singapore).
  • [44] Stoyanova, R., Koleva, V., & Stoyanova, A. (2019). Lithium versus Mono/Polyvalent ion intercalation: Hybrid metal ion systems for energy storage. The Chemical Record, 19(2-3), 474-501.
  • [45] Wu, H., Luo, S., Wang, H., Li, L., Fang, Y., Zhang, F., ... & Yuan, W. (2024). A review of anode materials for dual-ion batteries. Nano-Micro Letters, 16(1), 252.
  • [46] Zhang, M., Sun, C., Li, J., Shi, C., Li, X., & Zhao, B. (2025). Suppressed Mn dissolution behavior to improve cycling performance of Cr-modified Li1-xMn2O4 electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 136283.
  • [47] Wang, F., Yu, H.-C., Chen, M.-H., Wu, L., Pereira, N., Thornton, K., ... & Graetz, J. (2012). Tracking lithium transport and electrochemical reactions in nanoparticles. Nature Communications, 3(1), 1201.
  • [48] Aikiyo, H., Nakane, K., Ogata, N., & Ogihara, T. (2001). Effect of particle morphology on electrochemical property of LiMn2O4. Journal of the Ceramic Society of Japan, 109(1270), 506-510.
  • [49] Shin, S. Y. (2015). Electrochemical and mechanical properties of LiMn2O4 according to particle morphology. Seoul National University.
  • [50] Kondo, Y., Abe, T., & Yamada, Y. (2022). Kinetics of interfacial ion transfer in lithium-ion batteries: Mechanism understanding and improvement strategies. ACS Applied Materials & Interfaces, 14(20), 22706-22718.
  • [51] Chandra, A., & Bagchi, B. (2000). Frequency dependence of ionic conductivity of electrolyte solutions. The Journal of Chemical Physics, 112(4), 1876-1886.
  • [52] Liu, X., Fan, K., Huang, X., Ge, J., Liu, Y., & Kang, H. (2024). Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chemical Engineering Journal, 151625.
  • [53] Wright, M. R. (2007). An introduction to aqueous electrolyte solutions. John Wiley & Sons.
  • [54] Picálek, J., & Kolafa, J. (2007). Molecular dynamics study of conductivity of ionic liquids: The Kohlrausch law. Journal of Molecular Liquids, 134(1-3), 29-33.
  • [55] El-Latif, E. I. A., Alahmadi, M., Kebede, M. A., Phasha, M., Hameed, T. A., Khairy, Y., ... & Sheha, E. (2024). Modeling the Diffusion Coefficient of Charge Carriers in Batteries Using the Randles-Sevcik Equation. Available at SSRN 4749003.
  • [56] Magnussen, O. M., & Groß, A. (2019). Toward an atomic-scale understanding of electrochemical interface structure and dynamics. Journal of the American Chemical Society, 141(12), 4777-4790.
There are 56 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Makaleler
Authors

Melisa Uçan 0009-0004-9188-889X

Dilara ōzgenç 0009-0000-4473-4178

Yildiray Topcu 0000-0002-2095-6603

Burak Tekin 0000-0002-7533-3008

Early Pub Date August 14, 2025
Publication Date August 31, 2025
Submission Date April 12, 2025
Acceptance Date June 24, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Uçan, M., ōzgenç, D., Topcu, Y., Tekin, B. (2025). First-Ever Use of LiMn₂O₄ Cathode in State-of-the-Art Ammonium-Ion Batteries: Unlocking a New Ametal Charge Carrier. Erzincan University Journal of Science and Technology, 18(2), 431-450. https://doi.org/10.18185/erzifbed.1673054