Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 3, 892 - 916

Abstract

References

  • [1] Zeng, Y., Zhang, R. & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36-42.
  • [2] Akter, R., Doan, V.-S., Lee, J.-M. & Kim, D.-S. (2021). CNN-SSDI: Convolution neural network inspired surveillance system for UAVs detection and identification. Computer Networks, 201, 108519.
  • [3] Hassanalian, M. & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99-131.
  • [4] Taha, B. & Shoufan, A. (2019). Machine learning-based drone detection and classification: State-of-the-art in research. IEEE Access, 7, 138669-138682.
  • [5] Ritchie, M., Fioranelli, F. & Borrion, H. (2017). Micro UAV crime prevention: Can we help Princess Leia? In Crime prevention in the 21st century (pp. 359-376). Springer.
  • [6] Harkins, G. (2020). Illicit drone flights surge along us-mexico border as smugglers hunt for soft spots. accessed.
  • [7] Mehta, V., Dadboud, F., Bolic, M. & Mantegh, I. (2023). A Deep Learning Approach for Drone Detection and Classification Using Radar and Camera Sensor Fusion. IEEE Sensors Applications Symposium (SAS), 01-06.
  • [8] Rozantsev, A., Lepetit, V. & Fua, P. (2016). Detecting flying objects using a single moving camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5), 879-892.
  • [9] Busset, J., Perrodin, F., Wellig, P., Ott, B., Heutschi, K., Rühl, T. & Nussbaumer, T. (2015). Detection and tracking of drones using advanced acoustic cameras. Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space Optical Communication Techniques and Applications, 9647, 53-60.
  • [10] Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T. & Erbad, A. (2019). RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Generation Computer Systems, 100, 86-97.
  • [11] Fioranelli, F., Ritchie, M., Griffiths, H. & Borrion, H. (2015). Classification of loaded/unloaded micro-drones using multistatic radar. Electronics Letters, 51(22), 1813-1815.
  • [12] Drozdowicz, J., Wielgo, M., Samczynski, P., Kulpa, K., Krzonkalla, J., Mordzonek, M., Bryl, M. & Jakielaszek, Z. (2016). 35 GHz FMCW drone detection system. 2016 17th International Radar Symposium (IRS), 1-4.
  • [13] Fuhrmann, L., Biallawons, O., Klare, J., Panhuber, R., Klenke, R. & Ender, J. (2017). Micro-Doppler analysis and classification of UAVs at Ka band. 2017 18th International Radar Symposium (IRS), 1-9.
  • [14] Ritchie, M., Fioranelli, F., Griffiths, H. & Torvik., B. (2016). Monostatic and bistatic radar measurements of birds and micro-drone. 2016 IEEE Radar Conference (RadarConf), 1-5.
  • [15] Zhang, Z., Cao, Y., Ding, M., Zhuang, L. & Yao, W. (2016). An intruder detection algorithm for vision based sense and avoid system. 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 550-556.
  • [16] Ganti, S. R. & Kim, Y. (2016). Implementation of detection and tracking mechanism for small UAS. 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 1254- 1260.
  • [17] Stolkin, R., Rees, D., Talha, M. & Florescu, I. (2012). Bayesian fusion of thermal and visible spectra camera data for region based tracking with rapid background adaptation. 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 192-199
  • [18] Unlu, E., Zenou, E. & Riviere, N. (2018). Using shape descriptors for UAV detection. Electronic Imaging, 2018(9), 121-128.
  • [19] Wisniewski, M., Rana, Z. A. & Petrunin, I. (2022). Drone Model Classification Using Convolutional Neural Network Trained on Synthetic Data. Journal of Imaging, 8(8), 218.
  • [20] Kim, J., Park, C., Ahn, J., Ko, Y., Park, J. & Gallagher, J. C. (2017). Real-time UAV sound detection and analysis system. 2017 IEEE Sensors Applications Symposium (SAS), 1-5.
  • [21] Siriphun, N., Kashihara, S., Fall, D. & Khurat, A. (2018). Distinguishing drone types based on acoustic wave by IoT device. 2018 22nd International Computer Science and Engineering Conference (ICSEC), 1-4.
  • [22] Anwar, M. Z., Kaleem, Z. & Jamalipour, A. (2019). Machine learning inspired sound- based amateur drone detection for public safety applications. IEEE Transactions on Vehicular Technology, 68(3), 2526-2534.
  • [23] Alaparthy, V., Mandal, S. & Cummings, M. L. (2021). A comparison of machine learning and human performance in the real-time acoustic detection of drones. IEEE Aerospace.
  • [24] Allahham, M. H. D. S., Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T. & Erbad, A. (2019). DroneRF dataset: A dataset of drones for RF-based detection, classification and identification. Data in Brief, 26, 104313.
  • [25] Al-Emadi, S. & Al-Senaid, F. (2020). Drone detection approach based on radio-frequency using convolutional neural network. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 29-34.
  • [26] Medaiyese, O. O., Syed, A. & Lauf, A. P. (2021). Machine learning framework for RF- based drone detection and identification system. 2021 2nd International Conference On Smart Cities, Automation and Intelligent Computing Systems (ICON-SONICS), 58-64.
  • [27] Allahham, M. S., Khattab, T. & Mohamed, A. (2020). Deep learning for rf-based drone detection and identification: A multi-channel 1-d convolutional neural networks approach. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 112- 117.
  • [28] Swinney, C. J. & Woods, J. C. (2021). Unmanned aerial vehicle operating mode classification using deep residual learning feature extraction. Aerospace, 8(3), 79.
  • [29] Nemer, I., Sheltami, T., Ahmad, I., Yasar, A. U.-H. & Abdeen, M. A. R. (2021). RF-based UAV detection and identification using hierarchical learning approach. Sensors, 21(6), 1947.
  • [30] Kılıç, R., Kumbasar, N., Oral, E. A. & Ozbek, I. Y. (2022). Drone classification using RF signal based spectral features. Engineering Science and Technology, an International Journal, 28, 101028.
  • [31] Kumbasar, N., Kılıç, R., Oral, E. A. & Ozbek, I. Y. (2022). Comparison of spectrogram, persistence spectrum and percentile spectrum based image representation performances in drone detection and classification using novel HMFFNet: Hybrid Model with Feature Fusion Network. Expert Systems with Applications, 206, 117654.
  • [32] Huynh-The, T., Pham, Q.-V., Nguyen, T.-V., Da Costa, D. B. & Kim, D.-S. (2022). RF- UAVNet: High-Performance Convolutional Network for RF-Based Drone Surveillance Systems. IEEE Access, 10, 49696-49707.
  • [33] Mo, Y., Huang, J. & Qian, G. (2022). Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal. Sensors, 22(8), 3072.
  • [34] Nguyen, P., Kakaraparthi, V., Bui, N., Umamahesh, N., Pham, N., Truong, H., Guddeti, Y., Bharadia, D., Han, R., Frew, E., Massey, D. & Vu, T. (2020). DroneScale: drone load estimation via remote passive RF sensing. Proceedings of the 18th Conference on Embedded Networked Sensor Systems, 326-339.
  • [35] Paul S, B. S., Glittas, A. X. & Gopalakrishnan, L. (2021). A low latency modular-level deeply integrated MFCC feature extraction architecture for speech recognition. Integration, 76, 69-75. [36] Kumaran, U., Radha Rammohan, S., Nagarajan, S. M. & Prathik, A. (2021). Fusion of mel and gammatone frequency cepstral coefficients for speech emotion recognition using deep C- RNN. International Journal of Speech Technology, 24(2), 303-314.
  • [37] Nagarajan, S., Nettimi, S. S. S., Kumar, L. S., Nath, M. K. & Kanhe, A. (2020). Speech emotion recognition using cepstral features extracted with novel triangular filter banks based on bark and ERB frequency scales. Digital Signal Processing, 104, 102763.
  • [38] Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
  • [39] Oral, E. A., Çodur, M. M. & Ozbek, I. Y. (2017). Sleep stage classification based on filter bank optimization. 2017 25th Signal Processing and Communications Applications Conference (SIU), 1-4.
  • [40] Alsarhan, A., Alauthman, M., Alshdaifat, E., Al-Ghuwairi, A.-R. & Al-Dubai, A. (2021). Machine Learning-driven optimization for SVM-based intrusion detection system in vehicular ad hoc networks. Journal of Ambient Intelligence and Humanized Computing, 1-10.
  • [41] Gani, E. & Manzie, C. (2004). Intelligent computing methods for indicated torque reconstruction. Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 259–264.
  • [42] Achirul Nanda, M., Boro Seminar, K., Nandika, D. & Maddu, A. (2018). A comparison study of kernel functions in the support vector machine and its application for termite detection. Information, 9(1), 5.
  • [43] AlKhonaini, A., Sheltami, T., Mahmoud, A. & Imam, M. (2024). UAV Detection Using Reinforcement Learning. Sensors, 24(6), 1870.
  • [44] Ahmad, I., Narmeen, R., Alawad, M. A., Alkhrijah, Y. & Ho, P. H. (2024). Integrating Visual Geometry and Mask Region CNN for Enhanced UAV Detection and Identification. In 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall) (pp. 1-6). IEEE.
  • [45] Zahid, M. U., Nisar, M. D., Fazil, A., Ryu, J. & Shah, M. H. (2024). Composite Ensemble Learning Framework for Passive Drone Radio Frequency Fingerprinting in Sixth-Generation Networks. Sensors, 24(17), 5618.
  • [46] Haque, E., Hasan, K., Ahmed, I., Alam, M. S. & Islam, T. (2024). Towards an Interpretable AI Framework for Advanced Classification of Unmanned Aerial Vehicles (UAVs). In 2024 Kumbasar et al. EJSAT 2025, 18(3) 892-916
  • [47] Najafi, J., Mirzakuchaki, S. & Shamaghdari, S. (2025). Autonomous Drone Detection and Classification Using Computer Vision and Prony Algorithm-Based Frequency Feature Extraction. Journal of Intelligent and Robotic Systems, 111(1), 1-21.
  • [48] Dias, N. C., de Gosson, M. & Prata, J. N. (2024). A metaplectic perspective of uncertainty principles in the Linear Canonical Transform domain. Journal of Functional Analysis, 287(4), 110494.
  • [49] Kinoshita, Y., Osanai, T. & Clermont, F. (2022). Sub-band cepstral distance as an alternative to formants: Quantitative evidence from a forensic comparison experiment. Journal of Phonetics, 94, 101177.

Multi-frame Fusion Methods Based on Cepstral Coefficients for Drone Classification

Year 2025, Volume: 18 Issue: 3, 892 - 916

Abstract

The increasing popularity of drones in recent years has resulted in privacy and security vulnerabilities. Today, drones can be easily purchased and used. Therefore, people can take advantage of these drones to intrude into private areas. Detecting and identifying the presence of drones in an area is of great importance. There are different detection techniques, such as video, sounds, thermal imaging, and Radio Frequency (RF) signals, in drone detection and classification. In this study, RF signals are used to classify a drone. In order to effectively classify drones with high performance, the multi-frame majority voting method is recommended using the cepstral coefficients. For this purpose, drone signals are divided into multiple frames (2, 4, and 8), and each frame is extracted with Mel Frequency Cepstral Coefficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC) attributes. Then, each frame is classified by Support Vector Machine (SVM), and the predictions obtained from the frames of a drone signal are subjected to majority voting. Results were obtained with 100% accuracy for drone classification (4-Class) and 99.11% accuracy for defining operating mode (10-Class). The proposed method outperforms existing methods in drone classification using the DroneRF dataset.

References

  • [1] Zeng, Y., Zhang, R. & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36-42.
  • [2] Akter, R., Doan, V.-S., Lee, J.-M. & Kim, D.-S. (2021). CNN-SSDI: Convolution neural network inspired surveillance system for UAVs detection and identification. Computer Networks, 201, 108519.
  • [3] Hassanalian, M. & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99-131.
  • [4] Taha, B. & Shoufan, A. (2019). Machine learning-based drone detection and classification: State-of-the-art in research. IEEE Access, 7, 138669-138682.
  • [5] Ritchie, M., Fioranelli, F. & Borrion, H. (2017). Micro UAV crime prevention: Can we help Princess Leia? In Crime prevention in the 21st century (pp. 359-376). Springer.
  • [6] Harkins, G. (2020). Illicit drone flights surge along us-mexico border as smugglers hunt for soft spots. accessed.
  • [7] Mehta, V., Dadboud, F., Bolic, M. & Mantegh, I. (2023). A Deep Learning Approach for Drone Detection and Classification Using Radar and Camera Sensor Fusion. IEEE Sensors Applications Symposium (SAS), 01-06.
  • [8] Rozantsev, A., Lepetit, V. & Fua, P. (2016). Detecting flying objects using a single moving camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5), 879-892.
  • [9] Busset, J., Perrodin, F., Wellig, P., Ott, B., Heutschi, K., Rühl, T. & Nussbaumer, T. (2015). Detection and tracking of drones using advanced acoustic cameras. Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space Optical Communication Techniques and Applications, 9647, 53-60.
  • [10] Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T. & Erbad, A. (2019). RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Generation Computer Systems, 100, 86-97.
  • [11] Fioranelli, F., Ritchie, M., Griffiths, H. & Borrion, H. (2015). Classification of loaded/unloaded micro-drones using multistatic radar. Electronics Letters, 51(22), 1813-1815.
  • [12] Drozdowicz, J., Wielgo, M., Samczynski, P., Kulpa, K., Krzonkalla, J., Mordzonek, M., Bryl, M. & Jakielaszek, Z. (2016). 35 GHz FMCW drone detection system. 2016 17th International Radar Symposium (IRS), 1-4.
  • [13] Fuhrmann, L., Biallawons, O., Klare, J., Panhuber, R., Klenke, R. & Ender, J. (2017). Micro-Doppler analysis and classification of UAVs at Ka band. 2017 18th International Radar Symposium (IRS), 1-9.
  • [14] Ritchie, M., Fioranelli, F., Griffiths, H. & Torvik., B. (2016). Monostatic and bistatic radar measurements of birds and micro-drone. 2016 IEEE Radar Conference (RadarConf), 1-5.
  • [15] Zhang, Z., Cao, Y., Ding, M., Zhuang, L. & Yao, W. (2016). An intruder detection algorithm for vision based sense and avoid system. 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 550-556.
  • [16] Ganti, S. R. & Kim, Y. (2016). Implementation of detection and tracking mechanism for small UAS. 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 1254- 1260.
  • [17] Stolkin, R., Rees, D., Talha, M. & Florescu, I. (2012). Bayesian fusion of thermal and visible spectra camera data for region based tracking with rapid background adaptation. 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 192-199
  • [18] Unlu, E., Zenou, E. & Riviere, N. (2018). Using shape descriptors for UAV detection. Electronic Imaging, 2018(9), 121-128.
  • [19] Wisniewski, M., Rana, Z. A. & Petrunin, I. (2022). Drone Model Classification Using Convolutional Neural Network Trained on Synthetic Data. Journal of Imaging, 8(8), 218.
  • [20] Kim, J., Park, C., Ahn, J., Ko, Y., Park, J. & Gallagher, J. C. (2017). Real-time UAV sound detection and analysis system. 2017 IEEE Sensors Applications Symposium (SAS), 1-5.
  • [21] Siriphun, N., Kashihara, S., Fall, D. & Khurat, A. (2018). Distinguishing drone types based on acoustic wave by IoT device. 2018 22nd International Computer Science and Engineering Conference (ICSEC), 1-4.
  • [22] Anwar, M. Z., Kaleem, Z. & Jamalipour, A. (2019). Machine learning inspired sound- based amateur drone detection for public safety applications. IEEE Transactions on Vehicular Technology, 68(3), 2526-2534.
  • [23] Alaparthy, V., Mandal, S. & Cummings, M. L. (2021). A comparison of machine learning and human performance in the real-time acoustic detection of drones. IEEE Aerospace.
  • [24] Allahham, M. H. D. S., Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T. & Erbad, A. (2019). DroneRF dataset: A dataset of drones for RF-based detection, classification and identification. Data in Brief, 26, 104313.
  • [25] Al-Emadi, S. & Al-Senaid, F. (2020). Drone detection approach based on radio-frequency using convolutional neural network. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 29-34.
  • [26] Medaiyese, O. O., Syed, A. & Lauf, A. P. (2021). Machine learning framework for RF- based drone detection and identification system. 2021 2nd International Conference On Smart Cities, Automation and Intelligent Computing Systems (ICON-SONICS), 58-64.
  • [27] Allahham, M. S., Khattab, T. & Mohamed, A. (2020). Deep learning for rf-based drone detection and identification: A multi-channel 1-d convolutional neural networks approach. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 112- 117.
  • [28] Swinney, C. J. & Woods, J. C. (2021). Unmanned aerial vehicle operating mode classification using deep residual learning feature extraction. Aerospace, 8(3), 79.
  • [29] Nemer, I., Sheltami, T., Ahmad, I., Yasar, A. U.-H. & Abdeen, M. A. R. (2021). RF-based UAV detection and identification using hierarchical learning approach. Sensors, 21(6), 1947.
  • [30] Kılıç, R., Kumbasar, N., Oral, E. A. & Ozbek, I. Y. (2022). Drone classification using RF signal based spectral features. Engineering Science and Technology, an International Journal, 28, 101028.
  • [31] Kumbasar, N., Kılıç, R., Oral, E. A. & Ozbek, I. Y. (2022). Comparison of spectrogram, persistence spectrum and percentile spectrum based image representation performances in drone detection and classification using novel HMFFNet: Hybrid Model with Feature Fusion Network. Expert Systems with Applications, 206, 117654.
  • [32] Huynh-The, T., Pham, Q.-V., Nguyen, T.-V., Da Costa, D. B. & Kim, D.-S. (2022). RF- UAVNet: High-Performance Convolutional Network for RF-Based Drone Surveillance Systems. IEEE Access, 10, 49696-49707.
  • [33] Mo, Y., Huang, J. & Qian, G. (2022). Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal. Sensors, 22(8), 3072.
  • [34] Nguyen, P., Kakaraparthi, V., Bui, N., Umamahesh, N., Pham, N., Truong, H., Guddeti, Y., Bharadia, D., Han, R., Frew, E., Massey, D. & Vu, T. (2020). DroneScale: drone load estimation via remote passive RF sensing. Proceedings of the 18th Conference on Embedded Networked Sensor Systems, 326-339.
  • [35] Paul S, B. S., Glittas, A. X. & Gopalakrishnan, L. (2021). A low latency modular-level deeply integrated MFCC feature extraction architecture for speech recognition. Integration, 76, 69-75. [36] Kumaran, U., Radha Rammohan, S., Nagarajan, S. M. & Prathik, A. (2021). Fusion of mel and gammatone frequency cepstral coefficients for speech emotion recognition using deep C- RNN. International Journal of Speech Technology, 24(2), 303-314.
  • [37] Nagarajan, S., Nettimi, S. S. S., Kumar, L. S., Nath, M. K. & Kanhe, A. (2020). Speech emotion recognition using cepstral features extracted with novel triangular filter banks based on bark and ERB frequency scales. Digital Signal Processing, 104, 102763.
  • [38] Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
  • [39] Oral, E. A., Çodur, M. M. & Ozbek, I. Y. (2017). Sleep stage classification based on filter bank optimization. 2017 25th Signal Processing and Communications Applications Conference (SIU), 1-4.
  • [40] Alsarhan, A., Alauthman, M., Alshdaifat, E., Al-Ghuwairi, A.-R. & Al-Dubai, A. (2021). Machine Learning-driven optimization for SVM-based intrusion detection system in vehicular ad hoc networks. Journal of Ambient Intelligence and Humanized Computing, 1-10.
  • [41] Gani, E. & Manzie, C. (2004). Intelligent computing methods for indicated torque reconstruction. Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 259–264.
  • [42] Achirul Nanda, M., Boro Seminar, K., Nandika, D. & Maddu, A. (2018). A comparison study of kernel functions in the support vector machine and its application for termite detection. Information, 9(1), 5.
  • [43] AlKhonaini, A., Sheltami, T., Mahmoud, A. & Imam, M. (2024). UAV Detection Using Reinforcement Learning. Sensors, 24(6), 1870.
  • [44] Ahmad, I., Narmeen, R., Alawad, M. A., Alkhrijah, Y. & Ho, P. H. (2024). Integrating Visual Geometry and Mask Region CNN for Enhanced UAV Detection and Identification. In 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall) (pp. 1-6). IEEE.
  • [45] Zahid, M. U., Nisar, M. D., Fazil, A., Ryu, J. & Shah, M. H. (2024). Composite Ensemble Learning Framework for Passive Drone Radio Frequency Fingerprinting in Sixth-Generation Networks. Sensors, 24(17), 5618.
  • [46] Haque, E., Hasan, K., Ahmed, I., Alam, M. S. & Islam, T. (2024). Towards an Interpretable AI Framework for Advanced Classification of Unmanned Aerial Vehicles (UAVs). In 2024 Kumbasar et al. EJSAT 2025, 18(3) 892-916
  • [47] Najafi, J., Mirzakuchaki, S. & Shamaghdari, S. (2025). Autonomous Drone Detection and Classification Using Computer Vision and Prony Algorithm-Based Frequency Feature Extraction. Journal of Intelligent and Robotic Systems, 111(1), 1-21.
  • [48] Dias, N. C., de Gosson, M. & Prata, J. N. (2024). A metaplectic perspective of uncertainty principles in the Linear Canonical Transform domain. Journal of Functional Analysis, 287(4), 110494.
  • [49] Kinoshita, Y., Osanai, T. & Clermont, F. (2022). Sub-band cepstral distance as an alternative to formants: Quantitative evidence from a forensic comparison experiment. Journal of Phonetics, 94, 101177.
There are 48 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Makaleler
Authors

Nida Kumbasar 0000-0001-5497-4618

Rabiye Kılıç 0000-0003-3876-8878

Emin Argun Oral 0000-0002-8120-9679

Yücel Özbek 0000-0002-5734-7430

Early Pub Date October 30, 2025
Publication Date November 7, 2025
Submission Date November 20, 2024
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Kumbasar, N., Kılıç, R., Oral, E. A., Özbek, Y. (2025). Multi-frame Fusion Methods Based on Cepstral Coefficients for Drone Classification. Erzincan University Journal of Science and Technology, 18(3), 892-916.