Research Article
BibTex RIS Cite

Development of a MOF Based Potentiometric Sensor for Determination of Rhodamine B

Year 2025, Volume: 18 Issue: 3, 933 - 950

Abstract

Rhodamine B is a basic, red and cationic dye belonging to the class of xanthene dyes. Rhodamine B is harmful to human and animal health when taken orally or in contact with skin. It causes irritation to the skin, eyes and respiratory tract. It has been shown experimentally to be carcinogenic, reproductive and developmental toxicity, neurotoxicity, and chronic toxicity to humans and animals. Because of its intense color and availability, Rhodamine B has been illegally added to food products, particularly paprika seasonings, to enhance the natural color. In this study, a Rhodamine B-selective potentiometric sensor was developed by using MIL-53 (Al) as ionophore in the prepared membrane composition. The sensor prepared with 6% MIL-53 (Al), 26% PVC, 68% DOS membrane composition exhibited the best potentiometric performance. The Rhodamine B-selective sensor exhibited a linear response in the concentration range of 1.0×10−6 M-1.0×10−2 M with a slope of 58 mV/decade and a detection limit of 5.0×10−7 M. The response time of the Rhodamine B-selective sensor was less than 5 seconds and it was not affected by hydronium ion in the pH range of 4.49-8.08. Analytical application of the sensor was successfully carried out in Van Lake, waste water and tap water.

Project Number

FYL-2023-10450

References

  • [1] Arıbuğa, H., 2022. Demir (III) iyonuna hassas, tiyofen ile modifiye edilmiş rodamin tabanlı yeni tip sensörün sentezi, karakterizasyonu ve uygulamaları. Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Türkiye.
  • [2] Ünsal, Y. E. 2016. Sudan blue II, rodamin B ve kurkumin boyar maddelerinin ayrılması, zenginleştirilmesi ve spektrofotometrik tayini. Doktora tezi, Gaziosmanpaşa Üniversitesi, Türkiye.
  • [3] Qi, P., Lin, Z., Li, J., Wang, C., Meng, W., Hong, H., Zhang, X., 2014. Development of a rapid, simple and sensitive HPLC-FLD method for determination of Rhodamine B in chili- containing products, Food Chemistry, 164, 98-103.
  • [4] Jain, R., Mathur, M., Sikarwar, S., Mittal, A., 2007. Removal of the hazardous dye Rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85(4), 956-964.
  • [5] Sulistina, D. R., Martini, S., 2020. The effect of Rhodamine B on the cerebellum and brainstem tissue of Rattus norvegicus. Journal of Public Health Research, 9(2), 101-104.
  • [6] Desiderio, C., Marra, C., Fanali, S. 1998. Quantitative analysis of synthetic dyes in lipstick by micellar electrokinetic capillary chromatography. Electrophoresis, 19(8-9), 1478-1483.
  • [7] Wang, W., Leng, J., Yu, Y., Lu, L., Bai, L., Qiu, X., 2014. An electropolymerized rhodamine B sensing film-based electrochemical sensor for nitrite with high sensitivity and selectivity, International Journal of Electrochemical Science, 9(2), 921-930.
  • [8] Chiang, T. L., Wang, Y. C., Ding, W. H., 2012. Trace determination of Rhodamine B and rhodamine 6G dyes in aqueous samples by solid‐phase extraction and high‐performance liquid chromatography coupled with fluorescence detection, Journal of the Chinese Chemical Society, 59(4), 515-519.
  • [9] Botek, P., PouStka, J., Hajslova, J., 2007. Determination of banned dyes in spices by liquid chromatography-mass spectrometry, Czech Journal of Food Science, 25(1), 17-24.
  • [10] Alesso, M., Bondioli, G., Talío, M. C., Luconi, M. O., Fernández, L. P., 2012. Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies, Food Chemistry, 134(1), 513-517.
  • [11] Su, X., Li, X., Li, J., Liu, M., Lei, F., Tan, X., Luo, W., 2015. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food, Food Chemistry, 171, 292-297.
  • [12] Soylak, M., Unsal, Y. E., Yilmaz, E., Tuzen, M., 2011. Determination of rhodamine B in soft drink, wastewater and lipstick samples after solid phase extraction, Food and Chemical Toxicology, 49(8), 1796-1799.
  • [13] Xiao, N., Deng, J., Huang, K., Ju, S., Hu, C., Liang, J., 2014. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of Rhodamine B and rhodamine 6G after dispersive liquid–liquid microextraction, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 312-318.
  • [14] Zhu, X., Wu, G., Wang, C., Zhang, D., Yuan, X., 2018. A miniature and low-cost electrochemical system for sensitive determination of Rhodamine B, Measurement, 120, 206-212.
  • [15] Lin, S., Lin, X., Lou, X. T., Yang, F., Lin, D. Y., Lu, Z. W., 2015. Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates, Analytical Methods, 7(12), 5289-5294.
  • [16] Oplatowska, M., Elliott, C. T., 2011. Development and validation of rapid disequilibrium enzyme-linked immunosorbent assays for the detection of Methyl Yellow and Rhodamine B dyes in foods. Analyst, 136(11), 2403-2410.
  • [17] Mohammed, Q. A. M., 2022. Potansiyometrik ifosfamid-seçici sensör geliştirilmesi ve analitik uygulamaları. Yüksek lisans tezi, Erzincan Binali Yıldırım Üniversitesi, Türkiy
  • 18] Özbek, O., Işıldak, Ö., Yiğit, K. M., Çetin, A., 2020. Atık Su Analizlerinde Potansiyometrik Sensörlerin Kullanımı, Turkish Journal of Science and Health, 1(2), 70- 78.
  • [19] Pretsch, E., 2007. The new wave of ion-selective electrodes, TrAC Trends in Analytical Chemistry, 26(1), 46–51.
  • [20] Ayanoğlu, M. N., 2014. Perklorat ve salisilat anyonlarına duyarlı iyon-seçici elektrotlar hazırlanması. Yüksek lisans tezi, Ankara Üniversitesi, Türkiye.
  • [21] Asan, A., 2019. İyon-seçici elektrotlar kullanılarak çevre numunelerindeki sularda sertlik tayini, ALKÜ Fen Bilimleri Dergisi, 1(1), 8-19.
  • [22] Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Long, J. R., 2012. Carbon dioxide capture in metal–organic frameworks, Chemical Reviews, 112(2), 724-781.
  • [23] Stock, N., Biswas, S., 2012. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites, Chemical Reviews, 112(2), 933- 969.
  • [24] Furukawa, H., Cordova, K. E., O’Keeffe, M., Yaghi, O. M., 2013. The chemistry and applications of metal-organic frameworks, Science, 341(6149), 1230444.
  • [25] Tu, T. N., Nguyen, M. V., Nguyen, H. L., Yuliarto, B., Cordova, K. E., Demir, S., 2018. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications, Coordination Chemistry Reviews, 364, 33-50.
  • [26] Shojaei, F., Zohdi, S. H., Atashi, H., Mirzaei, A. A., 2023. Feasibility study on the use of MIL-53 (Al) as a support for iron catalysts in the CO hydrogenation reaction, Journal of Particle Science and Technology, 9(1), 43-49.
  • [27] Subasi, Y., Kanberoglu, G. S., Coldur, F., Cubuk, O., Zahmakiran, M., 2022. Development of MOF-based PVC membrane potentiometric sensor for determination of imipramine hydrochloride, Chemical Papers, 76(8), 5105-5117.
  • [28] Geçgel, C. (2020). Fonksiyonelleştirilmiş metal organik kafes yapıların sentezi, karakterizasyonu ve katalitik etkileri. Doktora tezi, Mersin Üniversitesi, Türkiye.
  • [29] Johansson, J. O. (2019). Single crystal to single crystal transformations of MIL-53 Metal Organic Frameworks. Master's Thesis, The University of Manchester, England.
  • [30] Tekce, S., Subasi, Y., Coldur, F., Kanberoglu, G. S., Zahmakiran, M., 2022. Development of a PVC Membrane Potentiometric Sensor with Low Detection Limit and Wide Linear Range for the Determination of Maprotiline in Pharmaceutical Formulations, Chemistry Select, 7(2), 1-8.
  • [31] Khaled, E., El-Ries, M. A., Zidane, F. I., Ibrahim, S. A., Abd-Elmonem, M. S., 2010. A simple potentiometric sensor for rhodamine B. Sensing in electroanalysis, 5, 127-140.
  • [32] Buck, R. P., Lindner, E., 1994. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure and Applied Chemistry, 66(12), 2527- 2536.

Rodamin B Tayini için MOF Temelli Potansiyometrik Sensör Geliştirilmesi

Year 2025, Volume: 18 Issue: 3, 933 - 950

Abstract

Rodamin B, ksanten boyaları sınıfına ait bazik, kırmızı ve katyonik bir boyar maddedir. Rodamin B, ağızdan alındığında veya deri ile teması halinde insan ve hayvan sağlığı için zararlıdır. Ciltte, gözlerde ve solunum yollarında tahrişe neden olur. Deneysel olarak, insanlara ve hayvanlara karşı kanserojen, üreme ve gelişimsel toksisite, nörotoksisite ve kronik toksisiteye sahip olduğu gösterilmiştir. Yoğun rengi ve kolay bulunabilmesi nedeniyle Rodamin B, doğal rengi geliştirmek için gıda ürünlerine, özellikle kırmızıbiber baharatlarına yasa dışı bir şekilde eklenmiştir. Bu çalışmada, hazırlanan membran bileşiminde iyonofor olarak MIL-53 (Al) kullanılarak Rodamin B-seçici potansiyometrik sensör geliştirildi. %6 MIL-53 (Al), %26 PVC, %68 DOS membran bileşimi ile hazırlanan sensör en iyi potansiyometrik performans özelliği sergiledi. Rodamin B-seçici sensör, 1.0×10−6 M-1.0×10−2 M konsantrasyon aralığında 58 mV/10 kat’lık eğim ve 5.0×10−7 M tayin limiti ile doğrusal bir cevap sergiledi. Rodamin B-seçici sensörün cevap zamanı 5 saniyeden düşük olduğu ve pH=4.49-8.08 aralığında hidronyum iyonundan etkilenmediği belirlendi. Sensörün analitik uygulaması Van Gölü, atık su ve çeşme suyunda başarıyla gerçekleştirildi.

Project Number

FYL-2023-10450

References

  • [1] Arıbuğa, H., 2022. Demir (III) iyonuna hassas, tiyofen ile modifiye edilmiş rodamin tabanlı yeni tip sensörün sentezi, karakterizasyonu ve uygulamaları. Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Türkiye.
  • [2] Ünsal, Y. E. 2016. Sudan blue II, rodamin B ve kurkumin boyar maddelerinin ayrılması, zenginleştirilmesi ve spektrofotometrik tayini. Doktora tezi, Gaziosmanpaşa Üniversitesi, Türkiye.
  • [3] Qi, P., Lin, Z., Li, J., Wang, C., Meng, W., Hong, H., Zhang, X., 2014. Development of a rapid, simple and sensitive HPLC-FLD method for determination of Rhodamine B in chili- containing products, Food Chemistry, 164, 98-103.
  • [4] Jain, R., Mathur, M., Sikarwar, S., Mittal, A., 2007. Removal of the hazardous dye Rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85(4), 956-964.
  • [5] Sulistina, D. R., Martini, S., 2020. The effect of Rhodamine B on the cerebellum and brainstem tissue of Rattus norvegicus. Journal of Public Health Research, 9(2), 101-104.
  • [6] Desiderio, C., Marra, C., Fanali, S. 1998. Quantitative analysis of synthetic dyes in lipstick by micellar electrokinetic capillary chromatography. Electrophoresis, 19(8-9), 1478-1483.
  • [7] Wang, W., Leng, J., Yu, Y., Lu, L., Bai, L., Qiu, X., 2014. An electropolymerized rhodamine B sensing film-based electrochemical sensor for nitrite with high sensitivity and selectivity, International Journal of Electrochemical Science, 9(2), 921-930.
  • [8] Chiang, T. L., Wang, Y. C., Ding, W. H., 2012. Trace determination of Rhodamine B and rhodamine 6G dyes in aqueous samples by solid‐phase extraction and high‐performance liquid chromatography coupled with fluorescence detection, Journal of the Chinese Chemical Society, 59(4), 515-519.
  • [9] Botek, P., PouStka, J., Hajslova, J., 2007. Determination of banned dyes in spices by liquid chromatography-mass spectrometry, Czech Journal of Food Science, 25(1), 17-24.
  • [10] Alesso, M., Bondioli, G., Talío, M. C., Luconi, M. O., Fernández, L. P., 2012. Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies, Food Chemistry, 134(1), 513-517.
  • [11] Su, X., Li, X., Li, J., Liu, M., Lei, F., Tan, X., Luo, W., 2015. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food, Food Chemistry, 171, 292-297.
  • [12] Soylak, M., Unsal, Y. E., Yilmaz, E., Tuzen, M., 2011. Determination of rhodamine B in soft drink, wastewater and lipstick samples after solid phase extraction, Food and Chemical Toxicology, 49(8), 1796-1799.
  • [13] Xiao, N., Deng, J., Huang, K., Ju, S., Hu, C., Liang, J., 2014. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of Rhodamine B and rhodamine 6G after dispersive liquid–liquid microextraction, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 312-318.
  • [14] Zhu, X., Wu, G., Wang, C., Zhang, D., Yuan, X., 2018. A miniature and low-cost electrochemical system for sensitive determination of Rhodamine B, Measurement, 120, 206-212.
  • [15] Lin, S., Lin, X., Lou, X. T., Yang, F., Lin, D. Y., Lu, Z. W., 2015. Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates, Analytical Methods, 7(12), 5289-5294.
  • [16] Oplatowska, M., Elliott, C. T., 2011. Development and validation of rapid disequilibrium enzyme-linked immunosorbent assays for the detection of Methyl Yellow and Rhodamine B dyes in foods. Analyst, 136(11), 2403-2410.
  • [17] Mohammed, Q. A. M., 2022. Potansiyometrik ifosfamid-seçici sensör geliştirilmesi ve analitik uygulamaları. Yüksek lisans tezi, Erzincan Binali Yıldırım Üniversitesi, Türkiy
  • 18] Özbek, O., Işıldak, Ö., Yiğit, K. M., Çetin, A., 2020. Atık Su Analizlerinde Potansiyometrik Sensörlerin Kullanımı, Turkish Journal of Science and Health, 1(2), 70- 78.
  • [19] Pretsch, E., 2007. The new wave of ion-selective electrodes, TrAC Trends in Analytical Chemistry, 26(1), 46–51.
  • [20] Ayanoğlu, M. N., 2014. Perklorat ve salisilat anyonlarına duyarlı iyon-seçici elektrotlar hazırlanması. Yüksek lisans tezi, Ankara Üniversitesi, Türkiye.
  • [21] Asan, A., 2019. İyon-seçici elektrotlar kullanılarak çevre numunelerindeki sularda sertlik tayini, ALKÜ Fen Bilimleri Dergisi, 1(1), 8-19.
  • [22] Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Long, J. R., 2012. Carbon dioxide capture in metal–organic frameworks, Chemical Reviews, 112(2), 724-781.
  • [23] Stock, N., Biswas, S., 2012. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites, Chemical Reviews, 112(2), 933- 969.
  • [24] Furukawa, H., Cordova, K. E., O’Keeffe, M., Yaghi, O. M., 2013. The chemistry and applications of metal-organic frameworks, Science, 341(6149), 1230444.
  • [25] Tu, T. N., Nguyen, M. V., Nguyen, H. L., Yuliarto, B., Cordova, K. E., Demir, S., 2018. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications, Coordination Chemistry Reviews, 364, 33-50.
  • [26] Shojaei, F., Zohdi, S. H., Atashi, H., Mirzaei, A. A., 2023. Feasibility study on the use of MIL-53 (Al) as a support for iron catalysts in the CO hydrogenation reaction, Journal of Particle Science and Technology, 9(1), 43-49.
  • [27] Subasi, Y., Kanberoglu, G. S., Coldur, F., Cubuk, O., Zahmakiran, M., 2022. Development of MOF-based PVC membrane potentiometric sensor for determination of imipramine hydrochloride, Chemical Papers, 76(8), 5105-5117.
  • [28] Geçgel, C. (2020). Fonksiyonelleştirilmiş metal organik kafes yapıların sentezi, karakterizasyonu ve katalitik etkileri. Doktora tezi, Mersin Üniversitesi, Türkiye.
  • [29] Johansson, J. O. (2019). Single crystal to single crystal transformations of MIL-53 Metal Organic Frameworks. Master's Thesis, The University of Manchester, England.
  • [30] Tekce, S., Subasi, Y., Coldur, F., Kanberoglu, G. S., Zahmakiran, M., 2022. Development of a PVC Membrane Potentiometric Sensor with Low Detection Limit and Wide Linear Range for the Determination of Maprotiline in Pharmaceutical Formulations, Chemistry Select, 7(2), 1-8.
  • [31] Khaled, E., El-Ries, M. A., Zidane, F. I., Ibrahim, S. A., Abd-Elmonem, M. S., 2010. A simple potentiometric sensor for rhodamine B. Sensing in electroanalysis, 5, 127-140.
  • [32] Buck, R. P., Lindner, E., 1994. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure and Applied Chemistry, 66(12), 2527- 2536.
There are 32 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry
Journal Section Makaleler
Authors

Nurcan Kaya 0000-0002-8178-1878

Gülşah Saydan Kanberoğlu 0000-0003-4231-6217

Project Number FYL-2023-10450
Early Pub Date October 30, 2025
Publication Date November 7, 2025
Submission Date November 29, 2024
Acceptance Date July 14, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Kaya, N., & Saydan Kanberoğlu, G. (2025). Development of a MOF Based Potentiometric Sensor for Determination of Rhodamine B. Erzincan University Journal of Science and Technology, 18(3), 933-950.