Research Article
BibTex RIS Cite

Effect of Azelaic Acid Priming on Some Germination and Seedling Parameter in Barley (Hordeum vulgare L.) Seeds Under Salt Stress

Year 2025, Volume: 18 Issue: 3, 917 - 932

Abstract

Abstract
This study was conducted to evaluate the effects of azelaic acid (AzA) priming on germination and some seedling parameters for seeds of barley (Hordeum vulgare L.) under salt stress conditions. In current research, four different salinity levels (0 mM NaCl; (control: pure water), 25 mM NaCl, 50 mM NaCl, 100 mM NaCl) and 2 different doses of AzA (0 mM, 0.5 mM), with 3 replicates were examined according to a complete randomised design. The seeds of Larende barley variety was used as plant material. Analysis of variance showed that the effect of AzA priming on shoot length, root fresh weight and shoot fresh weight of barley was significant (p ≤ 0.01), while the effect on other parameters was found insignificant (p ≥ 0.05). NaCl levels significantly affected all parameters (p ≤ 0.01). In the AzA × NaCl interaction, root fresh weight, shoot fresh weight, salt tolerance index and relative water content were affected significantly (p ≤ 0.01). In examine the effects of salinity levels on barley plant, especially on germination parameters, the values obtained from 0, 25 and 50 mM applications were in the same significance group. According to this result, when evaluated in terms of germination, it was concluded that water having 50 mM or less salt content can be used in barley cultivation. It is thought that it would be appropriate to try AzA at different doses and different salt levels in order to understand the effects of AzA treatment more clearly.

References

  • [1] Aliniaeifard, S., Hajilou, J. & Tabatabaei, S. J. (2016). Photosynthetic and growth responses of olive to proline and salicylic acid under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 579-585.
  • [2] Alsamadany, H., Abdulbaki, A. S. & Alzahrani, Y. (2024). Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights. Frontiers in plant science, 15, 1417021.
  • [3] Altuner, F., Erol, O., Tunctürk, R. & Baran, İ. (2020). Effect of salt (NaCl) stress on germination properties of quinoa (Chenopodium quinoa Willd.) seeds subjected to gibberellic acid (GA3) pre-treatment. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 23(2), 350-357.
  • [4] Altuner, F., Oral, E. & Baran, İ. (2022). Bazı Arpa (Hordeum vulgare L.) Çeşitlerinde tuz (NaCl) stresinin çimlenme özellikleri üzerine etkilerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19(1), 39-50.
  • [5] Atkinson, N. J., Lilley, C. J. & Urwin, P. E. (2013). Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant physiology, 162(4), 2028-2041.
  • [6] Badea, A. & Wijekoon, C. (2021). Benefits of Barley Grain in Animal and Human Diets. Chapter in a book: Cereal Grains. IntechOpen, 2021.
  • [7] Baig, Z., Khan, N., Sahar, S., Sattar, S. & Zehra, R. (2021). Effects of seed priming with ascorbic acid to mitigate salinity stress on three wheat (Triticum aestivum L.) cultivars. Acta Ecologica Sinica, 41(5), 491-498.
  • [8] Başaran, U. & Doğrusöz, M. Ç. (2022). Effect of Organic Compound-Based Priming and Seed Coating on Seedling Development and Characteristics of Alfalfa (Medicago sativa L.). ISPEC Journal of Agricultural Sciences, 6(4), 667-679.
  • [9] Bayat, E., Koşunkartay, H. & Kodaz, S. (2022). The Effect of Salinity Stress on Germination Parameters of Kırik Bread Wheat Variety (Triticum aestivum L.). European Journal of Science and Technology, 41, 246-251.
  • [10] Benlioğlu, B. & Özkan, U. (2015). Bazı arpa çeşitlerinin (Hordeum vulgare L.) çimlenme dönemlerinde farklı dozlardaki tuz stresine tepkilerinin belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24(2), 109-114.
  • [11] Blattner, F. R. (2018). Taxonomy of the genus Hordeum and barley (Hordeum vulgare). The barley genome, 11-23.
  • [12] Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandalio, L. M. & Pérez, J. A. (2014). Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Frontiers Media SA, 5, 642.
  • [13] Boussora, F., Triki, T., Bennani, L., Bagues, M., Ben Ali, S., Ferchichi, A., Ngaz, K. & Guasmi, F. (2024). Mineral accumulation, relative water content and gas exchange are the main physiological regulating mechanisms to cope with salt stress in barley. Scientific Reports, 14(1), 14931.
  • [14] Cecchini, N. M., Roychoudhry, S., Speed, D. J., Steffes, K., Tambe, A., Zodrow, K., Konstantinoff, K., Jung, H. W., Engle, N. L. & Tschaplinski, T. J. (2019). Underground azelaic acid–conferred resistance to Pseudomonas syringae in Arabidopsis. Molecular Plant-Microbe Interactions, 32(1), 86-94.
  • [15] Chauhan, A., Rajput, N., Kumar, D., Kumar, A. & Chaudhry, A. (2016). Effect of different salt concentration on seed germination and seedling growth of different varieties of oat (Avena sativa L.). International Journal of Information Research and Review, 3(7), 2627-2632.
  • [16] Choudhary, S., Wani, K. I., Naeem, M., Khan, M. M. A. & Aftab, T. (2023). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. Journal of plant growth regulation, 42(2), 539-553.
  • [17] Çifci, E. A., Kurt, P. Ö. & Yağdı, K. (2013). Effects of different salt concentrations on germination of triticale varieties. Journal of Agricultural Faculty of Uludag University, 27(2), 1-12.
  • [18] Daneshmand, F., Arvin, M. J. & Kalantari, K. M. (2010). Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiologiae Plantarum, 32, 91-101.
  • [19] Demiroğlu Topçu, G., Dumanoğlu, Z. & Özkan, Ş. (2018). The effects of different seed size and salinity on germination and some early growth parameters of annual ryegrass (Lolium multiflorum L.) cultivars. 2nd International Vocational Science Symposium, 26-28.
  • [20] Dinler, B. S. & Cetinkaya, H. (2024). An overview on Azelaic Acid: Biosynthesis, signalling and the action under stress conditions in plants. Journal of Plant Stress Physiology, 10, 8-12.
  • [21] Doğan, R. & Çarpıcı, E. B. (2016). Farklı tuz konsantrasyonlarının bazı tritikale hatlarının çimlenmesi üzerine etkileri. KSÜ Doğa Bilimleri Dergisi, 19(2), 130-135.
  • [22] Ghoohestani, A., Gheisary, H., Zahedi, S. M. & Dolatkhahi, A. (2012). Effect of seed priming of tomato with salicylic acid, ascorbic acid and hydrogen peroxideon germination and plantlet growth in saline conditions. International journal of Agronomy and Plant Production, 3(S), 700-704.
  • [23] Ghorbani, S., Etminan, A., Rashidi, V., Pour-Aboughadareh, A. & Shooshtari, L. (2023). Delineation of physiological and transcriptional responses of different barley genotypes to salt stress. Cereal Research Communications, 51(2), 367-377.
  • [24] Güleç, A., Yavuz, N. & Yavuz, D. (2025). Effect of Azelaic Acid Pre-Application to Maize (Zea mays L.) Seeds on Germination and Early Seedling Period under Salinity Stress Conditions. International Journal of Advanced Natural Sciences and Engineering Researches, 9, 296-303.
  • [25] Güngör, H., Çıkılı, Y. & Dumlupınar, Z. (2017). Effects of salt stress on germination and seedling development of some commercial and local oat genotypes. KSÜ Journal of Natural Sciences, 20, 263-267.
  • [26] Haghighi, M. & Sheibanirad, A. (2018). Evaluating of Azealic Acid on Tomato Vegetative and Photosynthetic Parameters under Salinity Stress. Journal of Horticultural Science, 32(2), 287-300.
  • [27] Haliloğlu, K., Türkoğlu, A. & Aydin, M. (2022). Determination of imazamox herbicide dose in in vivo selection in wheat (Triticum aestivum L.). Eregli journal of Agricultural Science.
  • [28] Hozayn, M. & Ahmed, A. A. (2019). Effect of magneto-priming by tryptophan and ascorbic acid on germination attributes of barley (Hordeum vulgare, L.) under salinity stress. EurAsian Journal of BioSciences, 13(1), 245-251.
  • [29] Hussain, S., Khaliq, A., Matloob, A., Wahid, M. A. & Afzal, I. (2013). Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environment, 32(1), 36-43.
  • [30] Işık, M. İ., Güleç, A., Türkoğlu, A. & Armağan, M. (2024). Exploring the Impact of Gypsophila perfoliata L. Root Extract on Germination and Seedling Growth Parameters of Sweet Sorghum and Hungarian Vetch. Erzincan University Journal of Science and Technology, 17(2), 327-337.
  • [31] Jadidi, O., Etminan, A., Azizi-Nezhad, R., Ebrahimi, A. & Pour-Aboughadareh, A. (2022). Physiological and molecular responses of barley genotypes to salinity stress. Genes, 13(11), 2040.
  • [32] Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89-91.
  • [33] Kalaji, H. M., Bosa, K., Kościelniak, J. & Żuk-Gołaszewska, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72.
  • [34] Karaman, R. (2023). Reaction of Chickpea Genotypes to Salinity-Inhibiting Applications at Different Salt Stress Levels. Gesunde Pflanzen, 75(5), 1823-1831.
  • [35] Kiremit, M. S., Hacıkamiloğlu, M. S., Arslan, H. & Orhan, K. (2017). Farklı sulama suyu tuzluluk seviyelerinin keten (Linum usitatissimum L.)’in çimlenme ve erken fide gelişimi üzerine etkisi. Anadolu Tarım Bilimleri Dergisi, 32(3), 350-357.
  • [36] Kusvuran, A., Nazli, R. & Kusvuran, S. (2015). The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Türk Tarım ve Doğa Bilimleri Dergisi, 2(1), 78-84.
  • [37] Leonetti, P., Hanafy, M. S., Tayade, R., Ramakrishnan, M., Sonah, H. & Jacobsen, H.-J. (2023). Leveraging genomics, phenomics, and plant biotechnology approaches for improving abiotic and biotic stress tolerance in cereals and legumes. Frontiers Media SA, 14, 1307390.
  • [38] Liu, J., Li, H., Yuan, Z., Feng, J., Chen, S., Sun, G., Wei, Z. & Hu, T. (2024). Effects of microbial fertilizer and irrigation amount on growth, physiology and water use efficiency of tomato in greenhouse. Scientia Horticulturae, 323, 112553.
  • [39] Mian, A., Oomen, R. J., Isayenkov, S., Sentenac, H., Maathuis, F. J. & Véry, A. A. (2011). Over‐expression of an Na+‐and K+‐permeable HKT transporter in barley improves salt tolerance. The Plant Journal, 68(3), 468-479.
  • [40] Mukhtarova, L. S., Mukhitova, F. K., Gogolev, Y. V. & Grechkin, A. N. (2011). Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry, 72(4-5), 356-364.
  • [41] Öner, F. & Kırlı, A. (2018). Effects of salt stress on germination and seedling growth of different bread wheat (Triticum aestivum L.) cultivars. Akademik Ziraat Dergisi, 7(2), 191-196.
  • [42] Özkorkmaz, F., Yılmaz, N. & Öner, F. (2020). Researching germination properties of bean (Phaseolus vulgaris L.) under polyethylene glycol osmotic stress and saline conditions. Akademik Ziraat Dergisi, 9(2), 251-258.
  • [43] Parihar, P., Singh, S., Singh, R., Singh, V. P. & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
  • [44] Qayyum, A., Al Ayoubi, S., Sher, A., Bibi, Y., Ahmad, S., Shen, Z. & Jenks, M. A. (2021). Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi journal of biological sciences, 28(9), 5238-5249.
  • [45] Sharipova, G., Ivanov, R., Veselov, D., Akhiyarova, G., Seldimirova, O., Galin, I., Fricke, W., Vysotskaya, L. & Kudoyarova, G. (2022). Effect of salinity on stomatal conductance, leaf hydraulic conductance, HvPIP2 aquaporin, and abscisic acid abundance in barley leaf cells. International Journal of Molecular Sciences, 23(22), 14282.
  • [46] Sirat, A. & Sezer, İ. (2013). Investigation of yield, yield components and some quality traits of some two-row barley (Hordeum vulgare conv. distichon) varieties in Samsun ecological conditions. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi.
  • [47] Süheri, S., Yaylalı, İ. K., Yavuz, D. & Yavuz, N. (2019). The effect of sodium chloride salinity on coated and uncoated alfalfa seeds germination. Harran Tarım ve Gıda Bilimleri Dergisi, 23(1), 31-38.
  • [48] Topçu, G. D. & Özkan, Ş. S. (2017). Determination of the Effect of Concentrations on Germination Characteristics of Some Barley (Hordeum vulgare L.) Varieties. ÇOMÜ Ziraat Fakültesi Dergisi, 5(2), 37-43.
  • [49] Türkoğlu, A., Tosun, M., Haliloğlu, K. & Karagöz, H. (2022). Effects of early drought stress on germination and seedling growth parameters of Kırik bread wheat (Triticum aestivum L.). Ereğli Journal of Agricultural Sciences, 2, 75-80.
  • [50] Vy, T. H., Nguyen, N. C., Xuan, H. T. L. & Thao, N. P. (2018). Role of GmNAC019 transcription factor in salinity and drought tolerance of transgenic Arabidopsis thaliana. Journal of Biotechnology, 16(4), 611-619.
  • [51] Yavuz, D., Kılıç, E., Seymen, M., Dal, Y., Kayak, N., Kal, Ü. & Yavuz, N. (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae, 304, 111272.
  • [52] Yavuz, D., Baştaş, K. K., Seymen, M., Yavuz, N., Kurtar, E. S., Süheri, S., Türkmen, Ö., Gür, A. & Kıymacı, G. (2023). Role of ACC deaminase-producing rhizobacteria in alleviation of water stress in watermelon. Scientia Horticulturae, 321, 112288.
  • [53] Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. & Kachroo, P. (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Reports, 3(4), 1266-1278.

Azelaik Asit Ön Uygulamasının Tuz Stresi Altındaki Arpa (Hordeum vulgare L.) Tohumlarında Bazı Çimlenme ve Fide Parametreleri Üzerine Etkisi

Year 2025, Volume: 18 Issue: 3, 917 - 932

Abstract

Öz
Bu çalışma, azelaik asit (AzA) ön uygulamasının tuz stresi koşullarındaki arpa (Hordeum vulgare L.) tohumlarının çimlenme ve bazı fide parametreleri üzerindeki etkilerini değerlendirmek amacıyla yürütülmüştür. Araştırma, tam şansa bağlı deneme desenine göre, dört farklı tuzluluk düzeyinde (0 mM NaCl; (kontrol: saf su), 25 mM NaCl, 50 mM NaCl, 100 mM NaCl) ve 2 farklı dozda AzA (0 mM, 0.5 mM) uygulaması, 3 tekerrürlü olarak yürütülmüştür. Bitkisel materyal olarak arpa çeşidi Larende kullanılmıştır. Çalışmada çimlenme ve bazı fide gelişim parametreleri (çimlenme oranı, ortalama çimlenme zamanı, çimlenme gücü indeksi, kök uzunluğu, sürgün uzunluğu, kök yaş ağırlığı, sürgün yaş ağırlığı, tuz tolerans indeksi, su kullanım etkinliği, bağıl su içeriği) saptanmıştır. Varyans analiz sonuçlarına göre arpada AzA ön uygulaması; sürgün uzunluğu, kök yaş ağırlığı ve sürgün yaş ağırlığı üzerine önemli düzeyde (p ≤ 0.01) etki etmiş olup, diğer parametreler üzerine etkisi önemsiz bulunmuştur (p ≥ 0.05). NaCl seviyeleri tüm parametreleri önemli düzeyde etkilemiştir (p ≤ 0.01). AzA × NaCl interaksiyonunda ise kök yaş ağırlığı, sürgün yaş ağırlığı, tuz tolerans indeksi ve bağıl su içeriği önemli düzeyde etkilenmiştir (p ≤ 0.01). Arpa bitkisinde tuzluluk seviyelerinin özellikle çimlenme parametreleri üzerindeki etkilerine bakıldığında, 0, 25 ve 50 mM uygulamalarından elde edilen değerler aynı önemlilik grubunda yer almıştır. Bu sonuca göre çimlenme açısından değerlendirildiğinde arpa yetiştiriciliğinde 50 mM ve daha az tuz içeren suların kullanılabileceği sonucuna varılmıştır. AzA uygulamasının etkilerinin daha net anlaşılabilmesi için farklı dozlarda ve farklı tuz seviyelerinde denenmesinin uygun olacağı düşünülmektedir.

References

  • [1] Aliniaeifard, S., Hajilou, J. & Tabatabaei, S. J. (2016). Photosynthetic and growth responses of olive to proline and salicylic acid under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 579-585.
  • [2] Alsamadany, H., Abdulbaki, A. S. & Alzahrani, Y. (2024). Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights. Frontiers in plant science, 15, 1417021.
  • [3] Altuner, F., Erol, O., Tunctürk, R. & Baran, İ. (2020). Effect of salt (NaCl) stress on germination properties of quinoa (Chenopodium quinoa Willd.) seeds subjected to gibberellic acid (GA3) pre-treatment. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 23(2), 350-357.
  • [4] Altuner, F., Oral, E. & Baran, İ. (2022). Bazı Arpa (Hordeum vulgare L.) Çeşitlerinde tuz (NaCl) stresinin çimlenme özellikleri üzerine etkilerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19(1), 39-50.
  • [5] Atkinson, N. J., Lilley, C. J. & Urwin, P. E. (2013). Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant physiology, 162(4), 2028-2041.
  • [6] Badea, A. & Wijekoon, C. (2021). Benefits of Barley Grain in Animal and Human Diets. Chapter in a book: Cereal Grains. IntechOpen, 2021.
  • [7] Baig, Z., Khan, N., Sahar, S., Sattar, S. & Zehra, R. (2021). Effects of seed priming with ascorbic acid to mitigate salinity stress on three wheat (Triticum aestivum L.) cultivars. Acta Ecologica Sinica, 41(5), 491-498.
  • [8] Başaran, U. & Doğrusöz, M. Ç. (2022). Effect of Organic Compound-Based Priming and Seed Coating on Seedling Development and Characteristics of Alfalfa (Medicago sativa L.). ISPEC Journal of Agricultural Sciences, 6(4), 667-679.
  • [9] Bayat, E., Koşunkartay, H. & Kodaz, S. (2022). The Effect of Salinity Stress on Germination Parameters of Kırik Bread Wheat Variety (Triticum aestivum L.). European Journal of Science and Technology, 41, 246-251.
  • [10] Benlioğlu, B. & Özkan, U. (2015). Bazı arpa çeşitlerinin (Hordeum vulgare L.) çimlenme dönemlerinde farklı dozlardaki tuz stresine tepkilerinin belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24(2), 109-114.
  • [11] Blattner, F. R. (2018). Taxonomy of the genus Hordeum and barley (Hordeum vulgare). The barley genome, 11-23.
  • [12] Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandalio, L. M. & Pérez, J. A. (2014). Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Frontiers Media SA, 5, 642.
  • [13] Boussora, F., Triki, T., Bennani, L., Bagues, M., Ben Ali, S., Ferchichi, A., Ngaz, K. & Guasmi, F. (2024). Mineral accumulation, relative water content and gas exchange are the main physiological regulating mechanisms to cope with salt stress in barley. Scientific Reports, 14(1), 14931.
  • [14] Cecchini, N. M., Roychoudhry, S., Speed, D. J., Steffes, K., Tambe, A., Zodrow, K., Konstantinoff, K., Jung, H. W., Engle, N. L. & Tschaplinski, T. J. (2019). Underground azelaic acid–conferred resistance to Pseudomonas syringae in Arabidopsis. Molecular Plant-Microbe Interactions, 32(1), 86-94.
  • [15] Chauhan, A., Rajput, N., Kumar, D., Kumar, A. & Chaudhry, A. (2016). Effect of different salt concentration on seed germination and seedling growth of different varieties of oat (Avena sativa L.). International Journal of Information Research and Review, 3(7), 2627-2632.
  • [16] Choudhary, S., Wani, K. I., Naeem, M., Khan, M. M. A. & Aftab, T. (2023). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. Journal of plant growth regulation, 42(2), 539-553.
  • [17] Çifci, E. A., Kurt, P. Ö. & Yağdı, K. (2013). Effects of different salt concentrations on germination of triticale varieties. Journal of Agricultural Faculty of Uludag University, 27(2), 1-12.
  • [18] Daneshmand, F., Arvin, M. J. & Kalantari, K. M. (2010). Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiologiae Plantarum, 32, 91-101.
  • [19] Demiroğlu Topçu, G., Dumanoğlu, Z. & Özkan, Ş. (2018). The effects of different seed size and salinity on germination and some early growth parameters of annual ryegrass (Lolium multiflorum L.) cultivars. 2nd International Vocational Science Symposium, 26-28.
  • [20] Dinler, B. S. & Cetinkaya, H. (2024). An overview on Azelaic Acid: Biosynthesis, signalling and the action under stress conditions in plants. Journal of Plant Stress Physiology, 10, 8-12.
  • [21] Doğan, R. & Çarpıcı, E. B. (2016). Farklı tuz konsantrasyonlarının bazı tritikale hatlarının çimlenmesi üzerine etkileri. KSÜ Doğa Bilimleri Dergisi, 19(2), 130-135.
  • [22] Ghoohestani, A., Gheisary, H., Zahedi, S. M. & Dolatkhahi, A. (2012). Effect of seed priming of tomato with salicylic acid, ascorbic acid and hydrogen peroxideon germination and plantlet growth in saline conditions. International journal of Agronomy and Plant Production, 3(S), 700-704.
  • [23] Ghorbani, S., Etminan, A., Rashidi, V., Pour-Aboughadareh, A. & Shooshtari, L. (2023). Delineation of physiological and transcriptional responses of different barley genotypes to salt stress. Cereal Research Communications, 51(2), 367-377.
  • [24] Güleç, A., Yavuz, N. & Yavuz, D. (2025). Effect of Azelaic Acid Pre-Application to Maize (Zea mays L.) Seeds on Germination and Early Seedling Period under Salinity Stress Conditions. International Journal of Advanced Natural Sciences and Engineering Researches, 9, 296-303.
  • [25] Güngör, H., Çıkılı, Y. & Dumlupınar, Z. (2017). Effects of salt stress on germination and seedling development of some commercial and local oat genotypes. KSÜ Journal of Natural Sciences, 20, 263-267.
  • [26] Haghighi, M. & Sheibanirad, A. (2018). Evaluating of Azealic Acid on Tomato Vegetative and Photosynthetic Parameters under Salinity Stress. Journal of Horticultural Science, 32(2), 287-300.
  • [27] Haliloğlu, K., Türkoğlu, A. & Aydin, M. (2022). Determination of imazamox herbicide dose in in vivo selection in wheat (Triticum aestivum L.). Eregli journal of Agricultural Science.
  • [28] Hozayn, M. & Ahmed, A. A. (2019). Effect of magneto-priming by tryptophan and ascorbic acid on germination attributes of barley (Hordeum vulgare, L.) under salinity stress. EurAsian Journal of BioSciences, 13(1), 245-251.
  • [29] Hussain, S., Khaliq, A., Matloob, A., Wahid, M. A. & Afzal, I. (2013). Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environment, 32(1), 36-43.
  • [30] Işık, M. İ., Güleç, A., Türkoğlu, A. & Armağan, M. (2024). Exploring the Impact of Gypsophila perfoliata L. Root Extract on Germination and Seedling Growth Parameters of Sweet Sorghum and Hungarian Vetch. Erzincan University Journal of Science and Technology, 17(2), 327-337.
  • [31] Jadidi, O., Etminan, A., Azizi-Nezhad, R., Ebrahimi, A. & Pour-Aboughadareh, A. (2022). Physiological and molecular responses of barley genotypes to salinity stress. Genes, 13(11), 2040.
  • [32] Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89-91.
  • [33] Kalaji, H. M., Bosa, K., Kościelniak, J. & Żuk-Gołaszewska, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72.
  • [34] Karaman, R. (2023). Reaction of Chickpea Genotypes to Salinity-Inhibiting Applications at Different Salt Stress Levels. Gesunde Pflanzen, 75(5), 1823-1831.
  • [35] Kiremit, M. S., Hacıkamiloğlu, M. S., Arslan, H. & Orhan, K. (2017). Farklı sulama suyu tuzluluk seviyelerinin keten (Linum usitatissimum L.)’in çimlenme ve erken fide gelişimi üzerine etkisi. Anadolu Tarım Bilimleri Dergisi, 32(3), 350-357.
  • [36] Kusvuran, A., Nazli, R. & Kusvuran, S. (2015). The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Türk Tarım ve Doğa Bilimleri Dergisi, 2(1), 78-84.
  • [37] Leonetti, P., Hanafy, M. S., Tayade, R., Ramakrishnan, M., Sonah, H. & Jacobsen, H.-J. (2023). Leveraging genomics, phenomics, and plant biotechnology approaches for improving abiotic and biotic stress tolerance in cereals and legumes. Frontiers Media SA, 14, 1307390.
  • [38] Liu, J., Li, H., Yuan, Z., Feng, J., Chen, S., Sun, G., Wei, Z. & Hu, T. (2024). Effects of microbial fertilizer and irrigation amount on growth, physiology and water use efficiency of tomato in greenhouse. Scientia Horticulturae, 323, 112553.
  • [39] Mian, A., Oomen, R. J., Isayenkov, S., Sentenac, H., Maathuis, F. J. & Véry, A. A. (2011). Over‐expression of an Na+‐and K+‐permeable HKT transporter in barley improves salt tolerance. The Plant Journal, 68(3), 468-479.
  • [40] Mukhtarova, L. S., Mukhitova, F. K., Gogolev, Y. V. & Grechkin, A. N. (2011). Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry, 72(4-5), 356-364.
  • [41] Öner, F. & Kırlı, A. (2018). Effects of salt stress on germination and seedling growth of different bread wheat (Triticum aestivum L.) cultivars. Akademik Ziraat Dergisi, 7(2), 191-196.
  • [42] Özkorkmaz, F., Yılmaz, N. & Öner, F. (2020). Researching germination properties of bean (Phaseolus vulgaris L.) under polyethylene glycol osmotic stress and saline conditions. Akademik Ziraat Dergisi, 9(2), 251-258.
  • [43] Parihar, P., Singh, S., Singh, R., Singh, V. P. & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
  • [44] Qayyum, A., Al Ayoubi, S., Sher, A., Bibi, Y., Ahmad, S., Shen, Z. & Jenks, M. A. (2021). Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi journal of biological sciences, 28(9), 5238-5249.
  • [45] Sharipova, G., Ivanov, R., Veselov, D., Akhiyarova, G., Seldimirova, O., Galin, I., Fricke, W., Vysotskaya, L. & Kudoyarova, G. (2022). Effect of salinity on stomatal conductance, leaf hydraulic conductance, HvPIP2 aquaporin, and abscisic acid abundance in barley leaf cells. International Journal of Molecular Sciences, 23(22), 14282.
  • [46] Sirat, A. & Sezer, İ. (2013). Investigation of yield, yield components and some quality traits of some two-row barley (Hordeum vulgare conv. distichon) varieties in Samsun ecological conditions. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi.
  • [47] Süheri, S., Yaylalı, İ. K., Yavuz, D. & Yavuz, N. (2019). The effect of sodium chloride salinity on coated and uncoated alfalfa seeds germination. Harran Tarım ve Gıda Bilimleri Dergisi, 23(1), 31-38.
  • [48] Topçu, G. D. & Özkan, Ş. S. (2017). Determination of the Effect of Concentrations on Germination Characteristics of Some Barley (Hordeum vulgare L.) Varieties. ÇOMÜ Ziraat Fakültesi Dergisi, 5(2), 37-43.
  • [49] Türkoğlu, A., Tosun, M., Haliloğlu, K. & Karagöz, H. (2022). Effects of early drought stress on germination and seedling growth parameters of Kırik bread wheat (Triticum aestivum L.). Ereğli Journal of Agricultural Sciences, 2, 75-80.
  • [50] Vy, T. H., Nguyen, N. C., Xuan, H. T. L. & Thao, N. P. (2018). Role of GmNAC019 transcription factor in salinity and drought tolerance of transgenic Arabidopsis thaliana. Journal of Biotechnology, 16(4), 611-619.
  • [51] Yavuz, D., Kılıç, E., Seymen, M., Dal, Y., Kayak, N., Kal, Ü. & Yavuz, N. (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae, 304, 111272.
  • [52] Yavuz, D., Baştaş, K. K., Seymen, M., Yavuz, N., Kurtar, E. S., Süheri, S., Türkmen, Ö., Gür, A. & Kıymacı, G. (2023). Role of ACC deaminase-producing rhizobacteria in alleviation of water stress in watermelon. Scientia Horticulturae, 321, 112288.
  • [53] Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. & Kachroo, P. (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Reports, 3(4), 1266-1278.
There are 53 citations in total.

Details

Primary Language English
Subjects Plant Physiology
Journal Section Makaleler
Authors

Aslı Güleç 0009-0004-8435-7038

Nurcan Yavuz 0000-0003-1833-0668

Aras Türkoğlu 0000-0003-2611-8034

Early Pub Date October 30, 2025
Publication Date November 6, 2025
Submission Date December 24, 2024
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Güleç, A., Yavuz, N., & Türkoğlu, A. (2025). Effect of Azelaic Acid Priming on Some Germination and Seedling Parameter in Barley (Hordeum vulgare L.) Seeds Under Salt Stress. Erzincan University Journal of Science and Technology, 18(3), 917-932.