Research Article
BibTex RIS Cite

Effects of Plant Growth Promoting Rhizobacteria (PGPR) Applications on Biochemical Activity and Enzyme Activity in Strawberries

Year 2025, Volume: 18 Issue: 3, 951 - 962

Abstract

Plant growth promoting rhizobacteria (PGPR), which have environmentally friendly properties, are important for their use as biofertilizers and biocontrol agents. The aim of this study was to determine the effects of single and combined applications of PGPR bacteria on maloninaldehyde (MDA), proline, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities of leaves in Albion and Monterey strawberry varieties. Bacillus subtilis OSU-142 (B. subtilis OSU-142), Bacillus megaterium M3 (B. megaterium M3) and Paenibacillus polymyx (P. polymyx) were used as PGPR in the study. The effect of rhizobacteria varied according to strawberry varieties. Rhizobacteria applications showed positive effects on MDA, SOD and POD. However, rhizobacteria treatments did not have a significant effect on proline, while they showed a varying effect on CAT according to the varieties. In this study, significant results were obtained on the effects of strawberry and rhizobacteria application on biochemical activity and enzymatic activity. The results of this study may provide important clues for future studies on similar subjects.

References

  • [1] Amil-Ruiz, F., Blanco-Portales, R., Munoz-Blanco, J., Caballero, J.L., (2011) The strawberry plant defense mechanism: A molecular review, Plant and cell physiology, 52(11), 1873-1903.
  • [2] Koraqi, H., Petkoska, A. T., Khalid, W., Sehrish, A., Ambreen, S., Lorenzo, J. M., (2023) Optimization of the extraction conditions of antioxidant phenolic compounds from strawberry fruits (Fragaria x ananassa Duch.) using response surface methodology. Food Analytical Methods, 16(6), 1030-1042.
  • [3] Basu, A., Nguyen, A., Betts, N.M. Lyons, T.J. 2014. Strawberry as a functional food: an evidence-based review. Critical Reviews in Food Science and Nutrition, 54, 790-806
  • [4] Ali, S., Moon, Y. S., Hamayun, M., Khan, M. A., Bibi, K., & Lee, I. J. (2022). Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. Journal of Plant Interactions, 17(1), 705-718.
  • [5] Arikan, S., Ipek, M., Pirlak, L., (2016). Effect of some plant growth promoting rhizobacteria (PGPR) on growth, leaf water content and membrane permeability of two citrus rootstock under salt stress condition. In Proceedings of the VII International Scientific Agriculture Symposium, Jahorina, Bosnia and Herzegovina, 6–9 October 2016; 845–850.
  • [6] Verma, P. P., Shelake, R. M., Das, S., Sharma, P., Kim, J. Y., (2019). Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. Microbial Interventions in Agriculture and Environment: Volume 1: Research Trends, Priorities and Prospects, 281-311.
  • [7] Adeyemi, N. O., Atayese, M. O., Olubode, A. A., Akan, M. E., (2020). Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. Journal of Plant Nutrition, 43(4), 487-499.
  • [8] Fukami, J., de la Osa, C., Ollero, F. J., Megías, M., Hungria, M., (2017). Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Functional Plant Biology, 45(3), 328-339.
  • [9] Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., Kouisni, L., (2020). From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: status and needs. Frontiers in bioengineering and biotechnology, 7, 425.
  • [10] Yaman, M., Yildiz, E., Sumbul, A., Ercisli, S., Sonmez, O., Gunes, A., Say, A., Kece, Y.M., Unsal, H. T. (2023). The Effect of PGPR Applications on Bioactive Content and Fruit Characteristics of Different Apple Scion–Rootstock Combinations. Erwerbs-Obstbau, 65(5), 1267-1273.
  • [11] Paliwoda, D., Mikiciuk, G., Mikiciuk, M., Kisiel, A., Sas-Paszt, L., Miller, T., (2022). Effects of rhizosphere bacteria on strawberry plants (Fragaria× ananassa Duch.) under water deficit. International Journal of Molecular Sciences, 23(18), 10449.
  • [12] Meena, H., Ahmed, M. A., Prakash, P., (2015). Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci Biotechno Res, 8(2), 171-174.
  • [13] Zubair, M., Hanif, A., Farzand, A., Sheikh, T. M. M., Khan, A. R., Suleman, M., Gao, X. (2019). Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms, 7(9), 337.
  • [14] Sangiorgio, D., Cellini, A., Spinelli, F., Donati, I., (2023). Promoting strawberry (Fragaria× ananassa) stress resistance, growth, and yield using native bacterial biostimulants. Agronomy, 13(2), 529.
  • [15] Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M. F., Turan, M., (2020). Plant growth promoting rhizobacteria mitigate deleterious combined effects of salinity and lime in soil in strawberry plants. Journal of Plant Nutrition, 43(13), 2028-2039.
  • [16] Kang, S. M., Asaf, S., Khan, A. L., Lubna, Khan, A., Mun, B. G., Lee, I. J., (2020). Complete genome sequence of Pseudomonas psychrotolerans CS51, a plant growth-promoting bacterium, under heavy metal stress conditions. Microorganisms, 8(3), 382.
  • [17] Lee, B. D., Dutta, S., Ryu, H., Yoo, S. J., Suh, D. S., Park, K., (2015). Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. Journal of Ginseng Research, 39(3), 213-220.
  • [18] Kalefetoğlu, T., Ekmekci, Y., (2005). The effects of drought on plant sand tolerance mechanisms. Gazi University Journal of Science, 18(4), 723-740.
  • [19] Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fotopoulos, V., (2020). Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9(8), 681. [20] Giordano, M., Petropoulos, S.A., Rouphael, Y., (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11(5):463.
  • [21] Apel, K., Hirt, H., (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55(1), 373-399.
  • [22] Ahmad, P., Kumar, A., Ashraf, M., Akram, N. A., (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11(11), 2694.
  • [23] Karabal, E., Yücel, M., Öktem, H.A., (2003). Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933
  • [24] Wang, S., Liang, D., Li, C., Hao, Y., Ma, F., Shu, H., (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 51: 81-89.
  • [25] Kar, M., Öztürk, N., (2020). The evulation of stress related gene expression level and relationship to cellular H2O2 in chickpea (Cicer arietinum L.) under copper stress. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 34(2), 303-315.
  • [26] Assaha, D. V. M., Liu Li Yun, L. L., Mekawy, A. M. M., Ueda, A., Nagaoka, T., Saneoka, H., (2015). Effect of salt stress on Na accumulation, antioxidant enzyme activities and activity of cell wall peroxidase of huckleberry (Solanum scabrum) and eggplant (Solanum melongena).
  • [27] Koca, H., Bor, M., Özdemir, F., & Türkan, İ. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and experimental Botany, 60(3), 344-351.
  • [28] Karagöz, H., Çakmakçi, R., Hosseinpour, A., Kodaz, S., (2018). Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits rhizobacteria. Applied Ecology and Environmental Res. 16(5):6801-6813.
  • [29] Yassin, M., El Sabagh, A., Mekawy, A. M. M., Islam, M. S., Hossain, A., Barutcular, C., Saneoka, H., (2019). Comparative performance of two bread wheat (Triticum aestivum L.) genotypes under salinity stress. Applied Ecology & Environmental Research, 17(2).
  • [30] Jha, Y., Subramanian, R. B., (2014). PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, 20, 201-207.
  • [31] Khan, N., Bano, A., Babar, M. A. (2019). The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Archives of microbiology, 201(6), 769-785.
  • [32] Erdogan, U., Çakmakçi, R., Varmazyarı, A., Turan, M., Erdogan, Y., Kıtır, N., (2016). Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture, 103(1), 67-76.
  • [33] Ahmed, C. B., Rouina, B. B., Boukhris, M., (2008). Changes in water relations, photosynthetic activity and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiologiae Plantarum, 30, 553-560.
  • [34] Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S., (2009). Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C (eds) Sustainable agriculture. Springer, Berlin, pp 153–188
  • [35] Sharma, S., Villamor, J.G., Verslues, P.E., (2011). Essential role of tissue specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157(1):292–304.
  • [36] Delauney, A.J., Verma, D.P.S., (1993). Cloning of ornithine δ-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthe sis. Plant J 4:215–223
  • [37] Matysik, J., Alia, Bhalu, B., Mohanty, P., (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 525-532.
  • [38] Nawaz, S., Bano, A., (2020). Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on enzymatic activity and physiology of cucumber. Recent patents on food, nutrition & agriculture, 11(2), 124-136.
  • [39] Khan, N., Bano, A., Rahman, M.A., Guo, J., Kang, Z., Babar, M.A., (2019). Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9(1):2097
  • [40] Singh, R.P., Jha, P.N., (2017). The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945
  • [41] Jung, S. (2004). Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci., 166; 459-466.
  • [42] Pinheiro, H. A., DaMatta, F. M., Chaves, A. R. M., Fontes, E. P. B., Loureiro, M. E., (2004). Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci., 167; 1307-1314.
  • [43] Yıldız, E., Yaman, M., Say, A., (2023). Effects of Rhizobacteria Application on Enzyme Activity of Different Apple Scion–Rootstock Combinations. Current Trends in Natural Sciences, 12(23), 42-48.
  • [44] Alexieva, V., Ivanov, S., Sergiev, I., Karanov, E., (2003). Interaction between stresses. Bulg. J. Plant Physiol, 29(3- 4), 1-17.
  • [45] Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P., Hamidpour, M., (2016). Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta physiologiae plantarum, 38, 1-16.
  • [46] Garazhian, M., Gharaghani, A., Eshghi, S., (2020). Genetic diversity and inter-relationships of fruit bio-chemicals and antioxidant activity in Iranian wild blackberry species. Scientific Reports, 10(1), 18983.

Bitki Büyümesini Teşvik Eden Rizobakteri (PGPR) Uygulamalarının Çileklerde Biyokimyasal Aktivite ve Enzim Aktivitesi Üzerine Etkileri

Year 2025, Volume: 18 Issue: 3, 951 - 962

Abstract

Çevre dostu özelliğe sahip olan bitki büyümesini teşvik eden rizobakteriler (PGPR), biyogübre ve biyokontrol ajanı olarak kullanımıyla önem arz etmektedir. Bu çalışmanın amacı, Albion ve Monterey çilek çeşitlerinde PGPR bakterilerinin tekli ve kombine uygulamalarının yaprakların maloninaldehit (MDA), prolin, süperoksit dismutaz (SOD), peroksidaz (POD) ve katalaz (CAT) aktiviteleri üzerine etkilerini belirlemektir. Çalışmada Bacillus subtilis OSU-142 (B. subtilis OSU-142), Bacillus megaterium M3 (B. megaterium M3) ve Paenibacillus polymyx (P. polymyx) PGPR olarak kullanılmıştır. Rizobakterilerin etkisi çeşitlere göre değişiklik göstemiştir. Rizobakteri uygulamaları MDA, SOD ve POD üzerinde olumlu etki göstermiştir. Ancak rizobakteri uygulamalarının prolin üzerinde önemli derecede bir etkisi görülmez iken CAT üzerinde ise çeşitlere göre değişen etki göstermiştir. Bu çalışmada, çilek ve rizobakteri uygulamasının biyokimyasal ve enzimatik aktivite üzerindeki etkileri konusunda çok önemli sonuçlar elde edilmiştir. Bu çalışmanın sonuçları gelecekte bu konuda yapılacak çalışmalar için önemli ipuçları sağlayabilir.

References

  • [1] Amil-Ruiz, F., Blanco-Portales, R., Munoz-Blanco, J., Caballero, J.L., (2011) The strawberry plant defense mechanism: A molecular review, Plant and cell physiology, 52(11), 1873-1903.
  • [2] Koraqi, H., Petkoska, A. T., Khalid, W., Sehrish, A., Ambreen, S., Lorenzo, J. M., (2023) Optimization of the extraction conditions of antioxidant phenolic compounds from strawberry fruits (Fragaria x ananassa Duch.) using response surface methodology. Food Analytical Methods, 16(6), 1030-1042.
  • [3] Basu, A., Nguyen, A., Betts, N.M. Lyons, T.J. 2014. Strawberry as a functional food: an evidence-based review. Critical Reviews in Food Science and Nutrition, 54, 790-806
  • [4] Ali, S., Moon, Y. S., Hamayun, M., Khan, M. A., Bibi, K., & Lee, I. J. (2022). Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. Journal of Plant Interactions, 17(1), 705-718.
  • [5] Arikan, S., Ipek, M., Pirlak, L., (2016). Effect of some plant growth promoting rhizobacteria (PGPR) on growth, leaf water content and membrane permeability of two citrus rootstock under salt stress condition. In Proceedings of the VII International Scientific Agriculture Symposium, Jahorina, Bosnia and Herzegovina, 6–9 October 2016; 845–850.
  • [6] Verma, P. P., Shelake, R. M., Das, S., Sharma, P., Kim, J. Y., (2019). Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. Microbial Interventions in Agriculture and Environment: Volume 1: Research Trends, Priorities and Prospects, 281-311.
  • [7] Adeyemi, N. O., Atayese, M. O., Olubode, A. A., Akan, M. E., (2020). Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. Journal of Plant Nutrition, 43(4), 487-499.
  • [8] Fukami, J., de la Osa, C., Ollero, F. J., Megías, M., Hungria, M., (2017). Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Functional Plant Biology, 45(3), 328-339.
  • [9] Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., Kouisni, L., (2020). From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: status and needs. Frontiers in bioengineering and biotechnology, 7, 425.
  • [10] Yaman, M., Yildiz, E., Sumbul, A., Ercisli, S., Sonmez, O., Gunes, A., Say, A., Kece, Y.M., Unsal, H. T. (2023). The Effect of PGPR Applications on Bioactive Content and Fruit Characteristics of Different Apple Scion–Rootstock Combinations. Erwerbs-Obstbau, 65(5), 1267-1273.
  • [11] Paliwoda, D., Mikiciuk, G., Mikiciuk, M., Kisiel, A., Sas-Paszt, L., Miller, T., (2022). Effects of rhizosphere bacteria on strawberry plants (Fragaria× ananassa Duch.) under water deficit. International Journal of Molecular Sciences, 23(18), 10449.
  • [12] Meena, H., Ahmed, M. A., Prakash, P., (2015). Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci Biotechno Res, 8(2), 171-174.
  • [13] Zubair, M., Hanif, A., Farzand, A., Sheikh, T. M. M., Khan, A. R., Suleman, M., Gao, X. (2019). Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms, 7(9), 337.
  • [14] Sangiorgio, D., Cellini, A., Spinelli, F., Donati, I., (2023). Promoting strawberry (Fragaria× ananassa) stress resistance, growth, and yield using native bacterial biostimulants. Agronomy, 13(2), 529.
  • [15] Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M. F., Turan, M., (2020). Plant growth promoting rhizobacteria mitigate deleterious combined effects of salinity and lime in soil in strawberry plants. Journal of Plant Nutrition, 43(13), 2028-2039.
  • [16] Kang, S. M., Asaf, S., Khan, A. L., Lubna, Khan, A., Mun, B. G., Lee, I. J., (2020). Complete genome sequence of Pseudomonas psychrotolerans CS51, a plant growth-promoting bacterium, under heavy metal stress conditions. Microorganisms, 8(3), 382.
  • [17] Lee, B. D., Dutta, S., Ryu, H., Yoo, S. J., Suh, D. S., Park, K., (2015). Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. Journal of Ginseng Research, 39(3), 213-220.
  • [18] Kalefetoğlu, T., Ekmekci, Y., (2005). The effects of drought on plant sand tolerance mechanisms. Gazi University Journal of Science, 18(4), 723-740.
  • [19] Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fotopoulos, V., (2020). Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9(8), 681. [20] Giordano, M., Petropoulos, S.A., Rouphael, Y., (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11(5):463.
  • [21] Apel, K., Hirt, H., (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55(1), 373-399.
  • [22] Ahmad, P., Kumar, A., Ashraf, M., Akram, N. A., (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11(11), 2694.
  • [23] Karabal, E., Yücel, M., Öktem, H.A., (2003). Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933
  • [24] Wang, S., Liang, D., Li, C., Hao, Y., Ma, F., Shu, H., (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 51: 81-89.
  • [25] Kar, M., Öztürk, N., (2020). The evulation of stress related gene expression level and relationship to cellular H2O2 in chickpea (Cicer arietinum L.) under copper stress. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 34(2), 303-315.
  • [26] Assaha, D. V. M., Liu Li Yun, L. L., Mekawy, A. M. M., Ueda, A., Nagaoka, T., Saneoka, H., (2015). Effect of salt stress on Na accumulation, antioxidant enzyme activities and activity of cell wall peroxidase of huckleberry (Solanum scabrum) and eggplant (Solanum melongena).
  • [27] Koca, H., Bor, M., Özdemir, F., & Türkan, İ. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and experimental Botany, 60(3), 344-351.
  • [28] Karagöz, H., Çakmakçi, R., Hosseinpour, A., Kodaz, S., (2018). Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits rhizobacteria. Applied Ecology and Environmental Res. 16(5):6801-6813.
  • [29] Yassin, M., El Sabagh, A., Mekawy, A. M. M., Islam, M. S., Hossain, A., Barutcular, C., Saneoka, H., (2019). Comparative performance of two bread wheat (Triticum aestivum L.) genotypes under salinity stress. Applied Ecology & Environmental Research, 17(2).
  • [30] Jha, Y., Subramanian, R. B., (2014). PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, 20, 201-207.
  • [31] Khan, N., Bano, A., Babar, M. A. (2019). The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Archives of microbiology, 201(6), 769-785.
  • [32] Erdogan, U., Çakmakçi, R., Varmazyarı, A., Turan, M., Erdogan, Y., Kıtır, N., (2016). Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture, 103(1), 67-76.
  • [33] Ahmed, C. B., Rouina, B. B., Boukhris, M., (2008). Changes in water relations, photosynthetic activity and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiologiae Plantarum, 30, 553-560.
  • [34] Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S., (2009). Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C (eds) Sustainable agriculture. Springer, Berlin, pp 153–188
  • [35] Sharma, S., Villamor, J.G., Verslues, P.E., (2011). Essential role of tissue specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157(1):292–304.
  • [36] Delauney, A.J., Verma, D.P.S., (1993). Cloning of ornithine δ-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthe sis. Plant J 4:215–223
  • [37] Matysik, J., Alia, Bhalu, B., Mohanty, P., (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 525-532.
  • [38] Nawaz, S., Bano, A., (2020). Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on enzymatic activity and physiology of cucumber. Recent patents on food, nutrition & agriculture, 11(2), 124-136.
  • [39] Khan, N., Bano, A., Rahman, M.A., Guo, J., Kang, Z., Babar, M.A., (2019). Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9(1):2097
  • [40] Singh, R.P., Jha, P.N., (2017). The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945
  • [41] Jung, S. (2004). Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci., 166; 459-466.
  • [42] Pinheiro, H. A., DaMatta, F. M., Chaves, A. R. M., Fontes, E. P. B., Loureiro, M. E., (2004). Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci., 167; 1307-1314.
  • [43] Yıldız, E., Yaman, M., Say, A., (2023). Effects of Rhizobacteria Application on Enzyme Activity of Different Apple Scion–Rootstock Combinations. Current Trends in Natural Sciences, 12(23), 42-48.
  • [44] Alexieva, V., Ivanov, S., Sergiev, I., Karanov, E., (2003). Interaction between stresses. Bulg. J. Plant Physiol, 29(3- 4), 1-17.
  • [45] Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P., Hamidpour, M., (2016). Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta physiologiae plantarum, 38, 1-16.
  • [46] Garazhian, M., Gharaghani, A., Eshghi, S., (2020). Genetic diversity and inter-relationships of fruit bio-chemicals and antioxidant activity in Iranian wild blackberry species. Scientific Reports, 10(1), 18983.
There are 45 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Makaleler
Authors

Mehmet Yaman 0000-0002-2899-2238

Ahmet Sümbül 0000-0001-9510-0992

Ahmet Say 0000-0001-5259-7580

Early Pub Date October 30, 2025
Publication Date November 3, 2025
Submission Date December 24, 2024
Acceptance Date January 28, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Yaman, M., Sümbül, A., & Say, A. (2025). Effects of Plant Growth Promoting Rhizobacteria (PGPR) Applications on Biochemical Activity and Enzyme Activity in Strawberries. Erzincan University Journal of Science and Technology, 18(3), 951-962.