Research Article
BibTex RIS Cite

Polilaktit-Perlit Kompozitlerinin Termal Bozunma Kinetiğinin İncelenmesi

Year 2025, Volume: 18 Issue: 3, 799 - 816

Abstract

Bu çalışmada; biyobozunur ve biyouyumlu olan polilaktitin, düşük maliyetli perlit ile farklı oranlarda kompozitleri hazırlanarak inert atmosferde termal bozunma davranışı ve kinetiği incelendi. Polilaktit, (PLA), kalay oktoat varlığında halka açılma polimerizasyonuyla sentezlenerek; FTIR, 1H-NMR, 13C-NMR, GPC ve TGA ile karakterize edildi. Polimerin sayı ortalama moleküler ağırlığı (Mn) 20,091 g/mol olarak bulundu. Sentezlenen PLA, %10, %20 ve %40 oranlarında perlit ile karıştırılarak çözgen uçurma yöntemiyle PLA/perlit kompozitleri hazırlandı. Kompozitlerin yapısı FTIR ile karakterize edilirken termal özellikleri TGA ile incelendi. Saf PLA’ya göre PLA/perlit (60/40) kompozitinin termal dayanımının 35 °C arttığı tespit edildi. Polimer ve kompozit malzemenin termal bozunma kinetiği farklı ısıtma hızlarında (5-10-15 ve 20 °C /dk) termogravimetrik analiz ile Flynn-Wall-Ozawa, Tang ve Kissinger metotları ile incelendi. Termal bozunma aktivasyon enerjileri sırasıyla 114,59 kJ/mol, 112,06 kJ/mol ve 124,12 kJ/mol olarak bulundu.

Project Number

TÜBİTAK 2209-A

References

  • [1] Lv, S., Zhang, Y., Tan, H., (2019) Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its composites, Waste Management, 87, 335–344. https://doi.org/10.1016/j.wasman.2019.02.027.
  • [2] Zhang, J.-F., Sun, X., (2005) Biodegradable polymers for industrial applications, Smith, R. (ed), 10-Poly(lactic acid)-based bioplastics,Woodhead Publishing, Cambridge, 251–288. https://doi.org/10.1533/9781845690762.2.251.
  • [3] Unal, B., Yalcinkaya, E. E., Gumustas, S., Sonmez, B., Ozkan, M., Balcan, M., Demirkol, D. O., Timur, S., (2017) Polyglycolide-montmorillonite as a novel nanocomposite platform for biosensing applications, New Journal of Chemistry, 41, 9371–9379. https://doi.org/10.1039/c7nj01751k.
  • [4] Balcan, S., Balcan, M., Çetinkaya, B., (2013) Poly(l-lactide) initiated by silver N- heterocyclic carbene complexes: synthesis, characterization and properties, Polymer Bulletin, 70, 3475–3485. https://doi.org/10.1007/s00289-013-1034-9.
  • [5] Martin, O., Avérous, L., (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, 42 (14), 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6.
  • [6] Tian, H., Tagaya, H., (2007) Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites, J Mater Sci 42, 3244–3250. https://doi.org/10.1007/s10853-006-0230-5.
  • [7] Chung, S. J., Kwon, K. Y., Lee, S. W., Jin, J. I., Lee, C. H., Lee, C. E., Park, Y., (1998). Highly efficient light-emitting diodes based on an organic-soluble poly(p-phenylenevinylene) derivative carrying the electron-transporting PBD moiety, Advanced Materials, 10 (14), 1112- 1116. https://doi.org/10.1002/(SICI)1521-4095(199810)10:14<1112::AID- ADMA1112>3.0.CO;2-P.
  • [8] Li, A.-K., Yang S. S., Jean W.-Y., Hsu C.-S., Hsieh B. R., (2000) Poly(2,3- diphenylphenylene vinylene) Derivatives Having Liquid Crystalline Side Groups, Chem Mater, 12 (9), 2741-2744. https://doi.org/10.1021/cm000295f.
  • [9] Neugebauer, H., Brabec, C., Hummelen, J.C., Sariciftci, N.S., (2000) Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Solar Energy Materials and Solar Cells, 61 (1), 35-42. https://doi.org/10.1016/S0927-0248(99)00094-X.
  • [10] Theberge, J. E. (1982) Mineral reinforced thermoplastic composites, Journal of Elastomers & Plastics, 14 (2), 100-108. https://doi.org/10.1177/009524438201400202.
  • [11] Liang, J.-Z., (2013) Reinforcement and quantitative description of inorganic particulate- filled polymer composites, Composites Part B: Engineering, 51, 224-232. https://doi.org/10.1016/j.compositesb.2013.03.019.
  • [12] Rothon, R. N. (Ed.). (2003). Particulate-filled polymer composites, 53-81, iSmithers Rapra Publishing, UK.
  • [13] Yang, K., Yang, Q., Li, G., Sun, Y., Feng, D., (2006) Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites, Materials Letters, 60 (6), 805- 809. https://doi.org/10.1016/j.matlet.2005.10.020.
  • [14] Dike A.S., (2020) Preparation and characterization of calcite loaded poly (lactic acid) composite materials, Erzincan University Journal of Science and Technology, 13 (1), 162-170. https://doi.org/10.18185/erzifbed.638547.
  • [15] Alghadi, A. M., Tirkes, S., Tayfun, U., (2020) Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral, Mater. Res. Express, 7, 01530. https://doi.org/10.1088/2053-1591/ab551b.
  • [16] Atagür, M., Sarikanat, M., Uysalman, T., Polat, O., Yakar Elbeyli I., Seki, Y., Sever, K., (2018) Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high- density polyethylene composite, Journal of Elastomers & Plastics, 50 (8), 747–761, https://doi.org/10.1177/0095244318765045.
  • [17] de Oliveira, A.G., Jandorno, J.C., da Rocha, E.B.D., de Sousa, A.M.F., da Silva, A.L.N., (2019) Evaluation of expanded perlite behavior in PS/Perlite composites, Applied Clay Science, 181, 105223. https://doi.org/10.1016/j.clay.2019.105223.
  • [18] Aval ST, Davachi SM, Sahraeian R, Dadmohammadi Y, Heidari BS, Seyfi J, Hejazi I, Mosleh I, Abbaspourrad A (2020) Nanoperlite effect on thermal, rheological, surface and cellular properties of poly lactic acid/nanoperlite nanocomposites for multipurpose applications, Polymer Testing 91, 106779. https://doi.org/10.1016/j.polymertesting.2020.106779.
  • [19] Rashad, A.M., (2016) A synopsis about perlite as building material – A best practice guide for Civil Engineer, Construction and Building Materials, 121, 338–353. https://doi.org/10.1016/j.conbuildmat.2016.06.001.
  • [20] Sayadi, A., Neitzert, T. R., Clifton G. C., (2018) Influence of poly-lactic acid on the properties of perlite concrete, Construction and Building Materials, 189, 660–675. https://doi.org/10.1016/j.conbuildmat.2018.09.029.
  • [21] Eğri, Ö., (2019) Use of microperlite in direct polymerization of lactic acid, International Journal of Polymer Analysis and Characterization, 24 (2), 142–149. https://doi.org/10.1080/1023666X.2018.1562412.
  • [22] Mothé, C.G., de Miranda, I.C., (2013) Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods, J Therm Anal Calorim, 113, 497–505. https://doi.org/10.1007/s10973-013-3163-7.
  • [23] Lv, X., Fang, J., Xie, J., Yang, X., Wang, J., (2018) Thermal stability of phosphorus- containing epoxy resins by thermogravimetric analysis, Polymers and Polymer Composites, 26 (7), 400-407. https://doi.org/10.1177/0967391118808701.
  • [24] Barneto, A. G., Carmona, J. A., Alfonso, J. E. M., Serrano, R. S., (2010) Simulation of the thermogravimetry analysis of three non-wood pulps, Bioresource Technology, 101 (9), 3220– 3229. https://doi.org/10.1016/j.biortech.2009.12.034.
  • [25] Peng, X., Ma, X., Lin, Y., Guo, Z., Hu, S., Ning, X., Cao, Y., Zhang, Y., (2015) Co- pyrolysis between microalgae and textile dyeing sludge by TG–FTIR: Kinetics and products, Energy Conversion and Management, 100, 391–402. https://doi.org/10.1016/j.enconman.2015.05.025.
  • [26] Dhyani, V., Kumar, J., Bhaskar, T., (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis, Bioresource Technology, 245, 1122–1129. https://doi.org/10.1016/j.biortech.2017.08.189.
  • [27] Kaur, R., Gera, P., Jha, M. K., Bhaskar, T., (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis, Bioresource Technology, 250, 422–428. https://doi.org/10.1016/j.biortech.2017.11.077.
  • [28] Mishra, R. K., Mohanty, K., (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresource Technology, 251, 63–74. https://doi.org/10.1016/j.biortech.2017.12.029.
  • [29] Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., Maspoch, M.L., (2013) Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission, Polymer Testing, 32 (5), 937–945. https://doi.org/10.1016/j.polymertesting.2013.04.013.
  • [30] Blanco, I., (2014) End-life prediction of commercial PLA used for food packaging through short term TGA experiments: Real chance or low reliability?, Chinese Journal of Polymer Science, 32 (6), 681–689. https://doi.org/10.1007/s10118-014-1453-6.
  • [31] Schwach, G., Coudane, J., Engel, R., Vert, M., (1997) More about the polymerization of lactides in the presence of stannous octoate, Journal of Polymer Science Part A: Polymer Chemistry, 35 (16), 3431–3440, https://doi.org/10.1002/(SICI)1099- 0518(19971130)35:16<3431::AID-POLA10>3.0.CO;2-G.
  • [32] Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N., (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 520 (1-2), 1-19, https://doi.org/10.1016/j.tca.2011.03.034.
  • [33] Vyazovkin, S., Isoconversional Kinetics Of Thermally Stimulated Processes, Springer, Cham, 2015, https://doi.org/10.1007/978-3-319-14175-6.
  • [34] Vyazovkin, S., Sbirrazzuoli, N., (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers, Macromolecular Rapid Communications, 27 (18), 1515– 1532. https://doi.org/10.1002/marc.200600404.
  • [35] Flynn, J. H., Wall, L. A., (1966) A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part B: Polymer Letters, 4, 323–328. http://dx.doi.org/10.1002/pol.1966.110040504.
  • [36] Ozawa, T., (1986) Applicability of Friedman plot, Journal of Thermal Analysis, 31, 547- 551. https://doi.org/10.1007/BF01914230.
  • [37] Kissinger, H.E., (1957) Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29, 1702-1706. http://dx.doi.org/10.1021/ac60131a045.
  • [38] Tang, W., Liu, Y.; Zhang, C. H.; Wang, C., (2003) Thermochim Acta, 40, 839.
  • [39] Zujovic, Z., Wheelwright, W. V., Kilmartin, P. A., Hanna, J. V., Cooney R. P., (2018) Structural investigations of perlite and expanded perlite using 1H, 27Al and 29Si solid-state NMR, Ceramics International, 44 (3) 2952–2958. https://doi.org/10.1016/j.ceramint.2017.11.047.
  • [40] Kabra, S. P., Katara, S., Rani, A., (2013) Characterization and study of Turkish perlite, International Journal of Innovative Research in Science, Engineering and Technology, 2, 4319– 4326. https://api.semanticscholar.org/CorpusID:59405544

Investigation of Thermal Degradation Kinetics of Polylactide-Perlite Composites

Year 2025, Volume: 18 Issue: 3, 799 - 816

Abstract

In this study, the thermal degradation behavior and kinetics of biodegradable and biocompatible polylactide were investigated by preparing composites with low-cost perlite at various ratios under an inert atmosphere. Polylactide (PLA) was characterized with FTIR, 1H-NMR, 13C-NMR, GPC and TGA after being synthesized with ring-opening polymerization in the presence of tin octoate. The number average molecular weight of polymer (Mn) was determined as 20.091 g/mol. PLA/perlite composites were prepared with the method of solvent casting, by mixing the synthesized PLA in ratios of 10%, 20% and 40% with perlite. While the structure of the composites was characterized with FTIR, their thermal characteristics were examined with TGA. It was found that the thermal stability of the PLA/perlite (60/40) composite increased by 35 °C compared to pure PLA. The thermal degradation kinetics of the polymeric and composite material was examined at different heating speeds (5-10-15 and 20 °C/min) with thermogravimetric analysis using the Flynn-Wall-Ozawa, Tang and Kissinger methods. The thermal degradation activation energies were determined as 114.59 kJ/mol, 112.06 kJ/mol and 124.12 kJ/mol respectively.

Ethical Statement

There are no ethical issues regarding the publication of this study.

Supporting Institution

TÜBİTAK

Project Number

TÜBİTAK 2209-A

Thanks

The authors also would like to thank TUBITAK (Program for the University Students at undergraduate level Program Number TUBITAK 2209-A).

References

  • [1] Lv, S., Zhang, Y., Tan, H., (2019) Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its composites, Waste Management, 87, 335–344. https://doi.org/10.1016/j.wasman.2019.02.027.
  • [2] Zhang, J.-F., Sun, X., (2005) Biodegradable polymers for industrial applications, Smith, R. (ed), 10-Poly(lactic acid)-based bioplastics,Woodhead Publishing, Cambridge, 251–288. https://doi.org/10.1533/9781845690762.2.251.
  • [3] Unal, B., Yalcinkaya, E. E., Gumustas, S., Sonmez, B., Ozkan, M., Balcan, M., Demirkol, D. O., Timur, S., (2017) Polyglycolide-montmorillonite as a novel nanocomposite platform for biosensing applications, New Journal of Chemistry, 41, 9371–9379. https://doi.org/10.1039/c7nj01751k.
  • [4] Balcan, S., Balcan, M., Çetinkaya, B., (2013) Poly(l-lactide) initiated by silver N- heterocyclic carbene complexes: synthesis, characterization and properties, Polymer Bulletin, 70, 3475–3485. https://doi.org/10.1007/s00289-013-1034-9.
  • [5] Martin, O., Avérous, L., (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, 42 (14), 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6.
  • [6] Tian, H., Tagaya, H., (2007) Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites, J Mater Sci 42, 3244–3250. https://doi.org/10.1007/s10853-006-0230-5.
  • [7] Chung, S. J., Kwon, K. Y., Lee, S. W., Jin, J. I., Lee, C. H., Lee, C. E., Park, Y., (1998). Highly efficient light-emitting diodes based on an organic-soluble poly(p-phenylenevinylene) derivative carrying the electron-transporting PBD moiety, Advanced Materials, 10 (14), 1112- 1116. https://doi.org/10.1002/(SICI)1521-4095(199810)10:14<1112::AID- ADMA1112>3.0.CO;2-P.
  • [8] Li, A.-K., Yang S. S., Jean W.-Y., Hsu C.-S., Hsieh B. R., (2000) Poly(2,3- diphenylphenylene vinylene) Derivatives Having Liquid Crystalline Side Groups, Chem Mater, 12 (9), 2741-2744. https://doi.org/10.1021/cm000295f.
  • [9] Neugebauer, H., Brabec, C., Hummelen, J.C., Sariciftci, N.S., (2000) Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Solar Energy Materials and Solar Cells, 61 (1), 35-42. https://doi.org/10.1016/S0927-0248(99)00094-X.
  • [10] Theberge, J. E. (1982) Mineral reinforced thermoplastic composites, Journal of Elastomers & Plastics, 14 (2), 100-108. https://doi.org/10.1177/009524438201400202.
  • [11] Liang, J.-Z., (2013) Reinforcement and quantitative description of inorganic particulate- filled polymer composites, Composites Part B: Engineering, 51, 224-232. https://doi.org/10.1016/j.compositesb.2013.03.019.
  • [12] Rothon, R. N. (Ed.). (2003). Particulate-filled polymer composites, 53-81, iSmithers Rapra Publishing, UK.
  • [13] Yang, K., Yang, Q., Li, G., Sun, Y., Feng, D., (2006) Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites, Materials Letters, 60 (6), 805- 809. https://doi.org/10.1016/j.matlet.2005.10.020.
  • [14] Dike A.S., (2020) Preparation and characterization of calcite loaded poly (lactic acid) composite materials, Erzincan University Journal of Science and Technology, 13 (1), 162-170. https://doi.org/10.18185/erzifbed.638547.
  • [15] Alghadi, A. M., Tirkes, S., Tayfun, U., (2020) Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral, Mater. Res. Express, 7, 01530. https://doi.org/10.1088/2053-1591/ab551b.
  • [16] Atagür, M., Sarikanat, M., Uysalman, T., Polat, O., Yakar Elbeyli I., Seki, Y., Sever, K., (2018) Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high- density polyethylene composite, Journal of Elastomers & Plastics, 50 (8), 747–761, https://doi.org/10.1177/0095244318765045.
  • [17] de Oliveira, A.G., Jandorno, J.C., da Rocha, E.B.D., de Sousa, A.M.F., da Silva, A.L.N., (2019) Evaluation of expanded perlite behavior in PS/Perlite composites, Applied Clay Science, 181, 105223. https://doi.org/10.1016/j.clay.2019.105223.
  • [18] Aval ST, Davachi SM, Sahraeian R, Dadmohammadi Y, Heidari BS, Seyfi J, Hejazi I, Mosleh I, Abbaspourrad A (2020) Nanoperlite effect on thermal, rheological, surface and cellular properties of poly lactic acid/nanoperlite nanocomposites for multipurpose applications, Polymer Testing 91, 106779. https://doi.org/10.1016/j.polymertesting.2020.106779.
  • [19] Rashad, A.M., (2016) A synopsis about perlite as building material – A best practice guide for Civil Engineer, Construction and Building Materials, 121, 338–353. https://doi.org/10.1016/j.conbuildmat.2016.06.001.
  • [20] Sayadi, A., Neitzert, T. R., Clifton G. C., (2018) Influence of poly-lactic acid on the properties of perlite concrete, Construction and Building Materials, 189, 660–675. https://doi.org/10.1016/j.conbuildmat.2018.09.029.
  • [21] Eğri, Ö., (2019) Use of microperlite in direct polymerization of lactic acid, International Journal of Polymer Analysis and Characterization, 24 (2), 142–149. https://doi.org/10.1080/1023666X.2018.1562412.
  • [22] Mothé, C.G., de Miranda, I.C., (2013) Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods, J Therm Anal Calorim, 113, 497–505. https://doi.org/10.1007/s10973-013-3163-7.
  • [23] Lv, X., Fang, J., Xie, J., Yang, X., Wang, J., (2018) Thermal stability of phosphorus- containing epoxy resins by thermogravimetric analysis, Polymers and Polymer Composites, 26 (7), 400-407. https://doi.org/10.1177/0967391118808701.
  • [24] Barneto, A. G., Carmona, J. A., Alfonso, J. E. M., Serrano, R. S., (2010) Simulation of the thermogravimetry analysis of three non-wood pulps, Bioresource Technology, 101 (9), 3220– 3229. https://doi.org/10.1016/j.biortech.2009.12.034.
  • [25] Peng, X., Ma, X., Lin, Y., Guo, Z., Hu, S., Ning, X., Cao, Y., Zhang, Y., (2015) Co- pyrolysis between microalgae and textile dyeing sludge by TG–FTIR: Kinetics and products, Energy Conversion and Management, 100, 391–402. https://doi.org/10.1016/j.enconman.2015.05.025.
  • [26] Dhyani, V., Kumar, J., Bhaskar, T., (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis, Bioresource Technology, 245, 1122–1129. https://doi.org/10.1016/j.biortech.2017.08.189.
  • [27] Kaur, R., Gera, P., Jha, M. K., Bhaskar, T., (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis, Bioresource Technology, 250, 422–428. https://doi.org/10.1016/j.biortech.2017.11.077.
  • [28] Mishra, R. K., Mohanty, K., (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresource Technology, 251, 63–74. https://doi.org/10.1016/j.biortech.2017.12.029.
  • [29] Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., Maspoch, M.L., (2013) Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission, Polymer Testing, 32 (5), 937–945. https://doi.org/10.1016/j.polymertesting.2013.04.013.
  • [30] Blanco, I., (2014) End-life prediction of commercial PLA used for food packaging through short term TGA experiments: Real chance or low reliability?, Chinese Journal of Polymer Science, 32 (6), 681–689. https://doi.org/10.1007/s10118-014-1453-6.
  • [31] Schwach, G., Coudane, J., Engel, R., Vert, M., (1997) More about the polymerization of lactides in the presence of stannous octoate, Journal of Polymer Science Part A: Polymer Chemistry, 35 (16), 3431–3440, https://doi.org/10.1002/(SICI)1099- 0518(19971130)35:16<3431::AID-POLA10>3.0.CO;2-G.
  • [32] Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N., (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 520 (1-2), 1-19, https://doi.org/10.1016/j.tca.2011.03.034.
  • [33] Vyazovkin, S., Isoconversional Kinetics Of Thermally Stimulated Processes, Springer, Cham, 2015, https://doi.org/10.1007/978-3-319-14175-6.
  • [34] Vyazovkin, S., Sbirrazzuoli, N., (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers, Macromolecular Rapid Communications, 27 (18), 1515– 1532. https://doi.org/10.1002/marc.200600404.
  • [35] Flynn, J. H., Wall, L. A., (1966) A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part B: Polymer Letters, 4, 323–328. http://dx.doi.org/10.1002/pol.1966.110040504.
  • [36] Ozawa, T., (1986) Applicability of Friedman plot, Journal of Thermal Analysis, 31, 547- 551. https://doi.org/10.1007/BF01914230.
  • [37] Kissinger, H.E., (1957) Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29, 1702-1706. http://dx.doi.org/10.1021/ac60131a045.
  • [38] Tang, W., Liu, Y.; Zhang, C. H.; Wang, C., (2003) Thermochim Acta, 40, 839.
  • [39] Zujovic, Z., Wheelwright, W. V., Kilmartin, P. A., Hanna, J. V., Cooney R. P., (2018) Structural investigations of perlite and expanded perlite using 1H, 27Al and 29Si solid-state NMR, Ceramics International, 44 (3) 2952–2958. https://doi.org/10.1016/j.ceramint.2017.11.047.
  • [40] Kabra, S. P., Katara, S., Rani, A., (2013) Characterization and study of Turkish perlite, International Journal of Innovative Research in Science, Engineering and Technology, 2, 4319– 4326. https://api.semanticscholar.org/CorpusID:59405544
There are 40 citations in total.

Details

Primary Language English
Subjects Inorganic Materials, Macromolecular Materials
Journal Section Makaleler
Authors

Sıla Gümüştaş 0000-0001-8538-2084

Nazlı Gül Aksoy 0009-0003-3338-3714

Project Number TÜBİTAK 2209-A
Early Pub Date October 30, 2025
Publication Date November 8, 2025
Submission Date March 11, 2025
Acceptance Date September 18, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Gümüştaş, S., & Aksoy, N. G. (2025). Investigation of Thermal Degradation Kinetics of Polylactide-Perlite Composites. Erzincan University Journal of Science and Technology, 18(3), 799-816.