Research Article
BibTex RIS Cite

Gallik Asit Tayinine Yönelik Kompozit Metal Oksit ile Modifiye Edilmiş Grafen Oksit Elektrot

Year 2025, Volume: 18 Issue: 3, 817 - 827

Abstract

Bu çalışmada kompozit metal oksit modifiye grafen oksitler camımsı karbon elektrot yüzeyinde hazırlanmıştır. Bu amaçla, öncelikle drop-dry tekniğiyle grafen oksit modifiye/camımsı karbon elektrot (GO/GCE) hazırlanmıştır. Ardından GO/GCE yüzeyine elektrokimyasal yöntemle TeOx-ZnOx nanoparçacıklar modifiye edilmiştir (TeOx-ZnOx/GO/GCE). Hazırlanan modifiye yüzey elektrokimyasal impedans spektroskopisi tekniği ve döngüsel voltammetri kullanılarak diğer elektrotlar ile karşılaştırılmıştır. TeOx-ZnOx/GO/GCE ile gallik asidin elektrokimyasal davranışı pH 2.3 Britton-Robinson tamponu içerisinde incelenmiştir. Optimize edilmiş koşullar altında, sensörün gallik asidi tespit etmek için amperometri tekniği ile elde edilen lineer ölçüm aralığı 0.5 µmol L⁻¹ - 1000 µmol L⁻¹ olup, LOD (tayin sınırı) 0.2 µmol L⁻¹ olarak belirlenmiştir. Gerçek örnek analizi çay örneğinde başarıyla çalışılmıştır. Sonuç olarak, önerilen kompozit modifiye elektrodun, gallic acid tayinine yönelik kararlı bir yüzey olarak doğru ve duyarlı bir analize imkan sağladığı görülmektedir.

Ethical Statement

Bu çalışmanın yayımlanmasıyla ilgili herhangi bir etik sorun bulunmamaktadır.

References

  • [1] Keyvani-Ghamsari, S.; Rahimi, M.; Khorsandi, K. An Update on the Potential Mechanism of Gallic Acid as an Antibacterial and Anticancer Agent. Food Science and Nutrition, 2023, 11, 5856–5872.
  • [2] Holghoomi, R.; Kiani, M.H.; Rahdar, A.; Hashemi, S.M.; Romanholo Ferreira, L.F.; Fathi-karkan, S. Nanoparticle-Delivered Gallic Acid: A New Frontier in Cancer Therapy. Journal of Drug Delivery Science and Technology, 2024, 101.
  • [3] Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic Acid: Pharmacological Activities and Molecular Mechanisms Involved in Inflammation-Related Diseases. Biomedicine and Pharmacotherapy, 2021, 133.
  • [4] Zhang, K. qiang; Lin, L. liang; Xu, H. jun. Research on Antioxidant Performance of Diglucosyl Gallic Acid and Its Application in Emulsion Cosmetics. Int J Cosmet Sci, 2022, 44, 177–188.
  • [5] Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants, 2024, 13.
  • [6] Falahi, S.; Falahi, S.; Zarejousheghani, M.; Ehrlich, H.; Joseph, Y.; Rahimi, P. Electrochemical Sensing of Gallic Acid in Beverages Using a 3D Bio-Nanocomposite Based on Carbon Nanotubes/Spongin-Atacamite. Biosensors (Basel), 2023, 13.
  • [7] Zhao, H.; Zhao, M.; Han, J.; Li, Z.; Tang, J.; Wang, Z.; Wang, G.; Komarneni, S. Room-Temperature Fabrication of Zeolitic Imidazolate Framework-8 Nanoparticles Combined with Graphitized and Carbonylated Carbon Nanotubes Networks for the Ultrasensitive Gallic Acid Electrochemical Detection. Food Chem, 2025, 465.
  • [8] Jakabová, S.; Árvay, J.; Šnirc, M.; Lakatošová, J.; Ondejčíková, A.; Golian, J. HPLC-DAD Method for Simultaneous Determination of Gallic Acid, Catechins, and Methylxanthines and Its Application in Quantitative Analysis and Origin Identification of Green Tea. Heliyon, 2024, 10.
  • [9] Gültekin-Özgüven, M.; Davarci, F.; Pasli, A.A.; Demir, N.; Özçelik, B. Determination of Phenolic Compounds by Ultra High Liquid Chromatography-Tandem Mass Spectrometry: Applications in Nuts. LWT, 2015, 64, 42–49.
  • [10] Yue, M.E.; Jiang, T.F.; Shi, Y.P. Determination of Gallic Acid and Salidroside in Rhodiola and Its Preparation by Capillary Electrophoresis. In Journal of Analytical Chemistry; 2006; Vol. 61, pp. 365–368.
  • [11] Di Giulio, T.; Ramírez-Morales, M.A.; Mastronardi, V.; Mele, G.; Brescia, R.; Pompa, P.P.; Malitesta, C.; De Benedetto, G.E.; Moglianetti, M.; Malvindi, M.A.; Mazzotta, E. Electrochemical Determination of Gallic Acid in Tea Samples Using Pyramidal Pt Nanoparticles. Adv Electron Mater, 2024.
  • [12] Koçak, Ç.C.; Karabiberoğlu, Ş.U.; Dursun, Z. Highly Sensitive Determination of Gallic Acid on Poly (L-Methionine)-Carbon Nanotube Composite Electrode. Journal of Electroanalytical Chemistry, 2019, 853.
  • [13] Sarıbaş, P.; Yıldız, C.; Eskiköy Bayraktepe, D.; Pekin Turan, M.; Yazan, Z. Gold Nanoparticles Decorated Kaolinite Mineral Modified Screen-Printed Electrode: Use for Simple, Sensitive Determination of Gallic Acid in Food Samples. Food Chem, 2024, 453.
  • [14] Achache, M.; El-Haddar, S.; El Haddaoui, H.; Idrissi, G.E.; Draoui, K.; Bouchta, D.; Choukairi, M. An Electrochemical Sensor Based on a Carbon Paste Electrode Modified with Lanthanum Nanocomposites for Gallic Acid Determination in Fruit Juice Samples. Mater Chem Phys, 2025, 332.
  • [15] Aslışen, B.; Koçak, S. Preparation of Mixed-Valent Manganese-Vanadium Oxide and Au Nanoparticle Modified Graphene Oxide Nanosheets Electrodes for the Simultaneous Determination of Hydrazine and Nitrite. Journal of Electroanalytical Chemistry, 2022, 904.
  • [16] Aslışen, B.; Koçak, Ç.C.; Koçak, S. Electrochemical Determination of Sesamol in Foods by Square Wave Voltammetry at a Boron-Doped Diamond Electrode. Anal Lett, 2020, 53, 343–354.
  • [17] Baruah, A.; Newar, R.; Das, S.; Kalita, N.; Nath, M.; Ghosh, P.; Chinnam, S.; Sarma, H.; Narayan, M. Biomedical Applications of Graphene-Based Nanomaterials: Recent Progress, Challenges, and Prospects in Highly Sensitive Biosensors. Discover Nano, 2024, 19.
  • [18] Mushahary, N.; Sarkar, A.; Basumatary, F.; Brahma, S.; Das, B.; Basumatary, S. Recent Developments on Graphene Oxide and Its Composite Materials: From Fundamentals to Applications in Biodiesel Synthesis, Adsorption, Photocatalysis, Supercapacitors, Sensors and Antimicrobial Activity. Results in Surfaces and Interfaces, 2024, 15.
  • [19] Ayan, E.M.; Karabiberoğlu, Ş.U.; Dursun, Z. A Practical Electrochemical Sensor for Atenolol Detection Based on a Graphene Oxide Composite Film Doped with Zinc Oxide Nanoparticles. ChemistrySelect, 2020, 5, 8846–8852.
  • [20] Ozdokur, K.V.; Demir, B.; Atman, E.; Tatli, A.Y.; Yilmaz, B.; Demirkol, D.O.; Kocak, S.; Timur, S.; Ertas, F.N. A Novel Ethanol Biosensor on Pulsed Deposited MnOx-MoOx Electrode Decorated with Pt Nanoparticles. Sens Actuators B Chem, 2016, 237, 291–297.
  • [21] Davaslıoğlu, İ.Ç.; Volkan Özdokur, K.; Koçak, S.; Çırak, Ç.; Çağlar, B.; Çırak, B.B.; Nil Ertaş, F. WO3 Decorated TiO2 Nanotube Array Electrode: Preparation, Characterization and Superior Photoelectrochemical Performance for Rhodamine B Dye Degradation. J Mol Struct, 2021, 1241.
  • [22] Tan, P.; Niu, C.; Lin, Z.; Lin, J.Y.; Long, L.; Zhang, Y.; Wilk, G.; Wang, H.; Ye, P.D. Wafer-Scale Atomic Layer-Deposited TeOx/Te Heterostructure P-Type Thin-Film Transistors. Nano Lett, 2024.
  • [23] Liu, A.; Kim, Y.S.; Kim, M.G.; Reo, Y.; Zou, T.; Choi, T.; Bai, S.; Zhu, H.; Noh, Y.Y. Selenium-Alloyed Tellurium Oxide for Amorphous p-Channel Transistors. Nature, 2024, 629, 798–802.
  • [24] Koçak, Ç.C.; Karabiberoğlu, Ş.U.; Dursun, Z. Highly Sensitive Determination of Gallic Acid on Poly (L-Methionine)-Carbon Nanotube Composite Electrode. Journal of Electroanalytical Chemistry, 2019, 853.
  • [25] Souza, L.P.; Calegari, F.; Zarbin, A.J.G.; Marcolino-Júnior, L.H.; Bergamini, M.F. Voltammetric Determination of the Antioxidant Capacity in Wine Samples Using a Carbon Nanotube Modified Electrode. In Journal of Agricultural and Food Chemistry; 2011; Vol. 59, pp. 7620–7625.
  • [26] Chekin, F.; Bagheri, S.; Bee, S.; Hamid, A. Glassy Carbon Electrodes Modified with Gelatin Functionalized Reduced Graphene Oxide Nanosheet for Determination of Gallic Acid; 2015; Vol. 38.
  • [27] Puangjan, A.; Chaiyasith, S. An Efficient ZrO2/Co3O4/Reduced Graphene Oxide Nanocomposite Electrochemical Sensor for Simultaneous Determination of Gallic Acid, Caffeic Acid and Protocatechuic Acid Natural Antioxidants. Electrochim Acta, 2016, 211, 273–288.

Composite Metal Oxide Modified–Graphene Oxide Electrode for Gallic Acid Determination

Year 2025, Volume: 18 Issue: 3, 817 - 827

Abstract

In this study, composite metal oxide modified graphene oxides were prepared on the surface of a glassy carbon electrode. For this aim, a graphene oxide-modified/glassy carbon electrode (GO/GCE) was initially prepared using the drop-dry technique. Subsequently, TeOx-ZnOx nanoparticles were modified onto the GO/GCE surface using an electrochemical method (TeOx-ZnOx/GO/GCE). The prepared modified surface was compared with other electrodes using electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of gallic acid was investigated with the TeOx-ZnOx/GO/GCE in a pH 2.3 Britton-Robinson buffer. Under optimized conditions, the sensor exhibited a linear range of 0.5 µmol L⁻¹ -1000 µmol L⁻¹ for gallic acid detection using the amperometry technique, with a limit of detection (LOD) of 0.2 µmol L⁻¹. Real sample analysis was successfully performed with tea samples. In conclusion, the proposed composite modified electrode provides a stable surface for accurate and sensitive analysis of gallic acid determination.

Ethical Statement

There are no ethical issues regarding the publication of this study

References

  • [1] Keyvani-Ghamsari, S.; Rahimi, M.; Khorsandi, K. An Update on the Potential Mechanism of Gallic Acid as an Antibacterial and Anticancer Agent. Food Science and Nutrition, 2023, 11, 5856–5872.
  • [2] Holghoomi, R.; Kiani, M.H.; Rahdar, A.; Hashemi, S.M.; Romanholo Ferreira, L.F.; Fathi-karkan, S. Nanoparticle-Delivered Gallic Acid: A New Frontier in Cancer Therapy. Journal of Drug Delivery Science and Technology, 2024, 101.
  • [3] Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic Acid: Pharmacological Activities and Molecular Mechanisms Involved in Inflammation-Related Diseases. Biomedicine and Pharmacotherapy, 2021, 133.
  • [4] Zhang, K. qiang; Lin, L. liang; Xu, H. jun. Research on Antioxidant Performance of Diglucosyl Gallic Acid and Its Application in Emulsion Cosmetics. Int J Cosmet Sci, 2022, 44, 177–188.
  • [5] Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants, 2024, 13.
  • [6] Falahi, S.; Falahi, S.; Zarejousheghani, M.; Ehrlich, H.; Joseph, Y.; Rahimi, P. Electrochemical Sensing of Gallic Acid in Beverages Using a 3D Bio-Nanocomposite Based on Carbon Nanotubes/Spongin-Atacamite. Biosensors (Basel), 2023, 13.
  • [7] Zhao, H.; Zhao, M.; Han, J.; Li, Z.; Tang, J.; Wang, Z.; Wang, G.; Komarneni, S. Room-Temperature Fabrication of Zeolitic Imidazolate Framework-8 Nanoparticles Combined with Graphitized and Carbonylated Carbon Nanotubes Networks for the Ultrasensitive Gallic Acid Electrochemical Detection. Food Chem, 2025, 465.
  • [8] Jakabová, S.; Árvay, J.; Šnirc, M.; Lakatošová, J.; Ondejčíková, A.; Golian, J. HPLC-DAD Method for Simultaneous Determination of Gallic Acid, Catechins, and Methylxanthines and Its Application in Quantitative Analysis and Origin Identification of Green Tea. Heliyon, 2024, 10.
  • [9] Gültekin-Özgüven, M.; Davarci, F.; Pasli, A.A.; Demir, N.; Özçelik, B. Determination of Phenolic Compounds by Ultra High Liquid Chromatography-Tandem Mass Spectrometry: Applications in Nuts. LWT, 2015, 64, 42–49.
  • [10] Yue, M.E.; Jiang, T.F.; Shi, Y.P. Determination of Gallic Acid and Salidroside in Rhodiola and Its Preparation by Capillary Electrophoresis. In Journal of Analytical Chemistry; 2006; Vol. 61, pp. 365–368.
  • [11] Di Giulio, T.; Ramírez-Morales, M.A.; Mastronardi, V.; Mele, G.; Brescia, R.; Pompa, P.P.; Malitesta, C.; De Benedetto, G.E.; Moglianetti, M.; Malvindi, M.A.; Mazzotta, E. Electrochemical Determination of Gallic Acid in Tea Samples Using Pyramidal Pt Nanoparticles. Adv Electron Mater, 2024.
  • [12] Koçak, Ç.C.; Karabiberoğlu, Ş.U.; Dursun, Z. Highly Sensitive Determination of Gallic Acid on Poly (L-Methionine)-Carbon Nanotube Composite Electrode. Journal of Electroanalytical Chemistry, 2019, 853.
  • [13] Sarıbaş, P.; Yıldız, C.; Eskiköy Bayraktepe, D.; Pekin Turan, M.; Yazan, Z. Gold Nanoparticles Decorated Kaolinite Mineral Modified Screen-Printed Electrode: Use for Simple, Sensitive Determination of Gallic Acid in Food Samples. Food Chem, 2024, 453.
  • [14] Achache, M.; El-Haddar, S.; El Haddaoui, H.; Idrissi, G.E.; Draoui, K.; Bouchta, D.; Choukairi, M. An Electrochemical Sensor Based on a Carbon Paste Electrode Modified with Lanthanum Nanocomposites for Gallic Acid Determination in Fruit Juice Samples. Mater Chem Phys, 2025, 332.
  • [15] Aslışen, B.; Koçak, S. Preparation of Mixed-Valent Manganese-Vanadium Oxide and Au Nanoparticle Modified Graphene Oxide Nanosheets Electrodes for the Simultaneous Determination of Hydrazine and Nitrite. Journal of Electroanalytical Chemistry, 2022, 904.
  • [16] Aslışen, B.; Koçak, Ç.C.; Koçak, S. Electrochemical Determination of Sesamol in Foods by Square Wave Voltammetry at a Boron-Doped Diamond Electrode. Anal Lett, 2020, 53, 343–354.
  • [17] Baruah, A.; Newar, R.; Das, S.; Kalita, N.; Nath, M.; Ghosh, P.; Chinnam, S.; Sarma, H.; Narayan, M. Biomedical Applications of Graphene-Based Nanomaterials: Recent Progress, Challenges, and Prospects in Highly Sensitive Biosensors. Discover Nano, 2024, 19.
  • [18] Mushahary, N.; Sarkar, A.; Basumatary, F.; Brahma, S.; Das, B.; Basumatary, S. Recent Developments on Graphene Oxide and Its Composite Materials: From Fundamentals to Applications in Biodiesel Synthesis, Adsorption, Photocatalysis, Supercapacitors, Sensors and Antimicrobial Activity. Results in Surfaces and Interfaces, 2024, 15.
  • [19] Ayan, E.M.; Karabiberoğlu, Ş.U.; Dursun, Z. A Practical Electrochemical Sensor for Atenolol Detection Based on a Graphene Oxide Composite Film Doped with Zinc Oxide Nanoparticles. ChemistrySelect, 2020, 5, 8846–8852.
  • [20] Ozdokur, K.V.; Demir, B.; Atman, E.; Tatli, A.Y.; Yilmaz, B.; Demirkol, D.O.; Kocak, S.; Timur, S.; Ertas, F.N. A Novel Ethanol Biosensor on Pulsed Deposited MnOx-MoOx Electrode Decorated with Pt Nanoparticles. Sens Actuators B Chem, 2016, 237, 291–297.
  • [21] Davaslıoğlu, İ.Ç.; Volkan Özdokur, K.; Koçak, S.; Çırak, Ç.; Çağlar, B.; Çırak, B.B.; Nil Ertaş, F. WO3 Decorated TiO2 Nanotube Array Electrode: Preparation, Characterization and Superior Photoelectrochemical Performance for Rhodamine B Dye Degradation. J Mol Struct, 2021, 1241.
  • [22] Tan, P.; Niu, C.; Lin, Z.; Lin, J.Y.; Long, L.; Zhang, Y.; Wilk, G.; Wang, H.; Ye, P.D. Wafer-Scale Atomic Layer-Deposited TeOx/Te Heterostructure P-Type Thin-Film Transistors. Nano Lett, 2024.
  • [23] Liu, A.; Kim, Y.S.; Kim, M.G.; Reo, Y.; Zou, T.; Choi, T.; Bai, S.; Zhu, H.; Noh, Y.Y. Selenium-Alloyed Tellurium Oxide for Amorphous p-Channel Transistors. Nature, 2024, 629, 798–802.
  • [24] Koçak, Ç.C.; Karabiberoğlu, Ş.U.; Dursun, Z. Highly Sensitive Determination of Gallic Acid on Poly (L-Methionine)-Carbon Nanotube Composite Electrode. Journal of Electroanalytical Chemistry, 2019, 853.
  • [25] Souza, L.P.; Calegari, F.; Zarbin, A.J.G.; Marcolino-Júnior, L.H.; Bergamini, M.F. Voltammetric Determination of the Antioxidant Capacity in Wine Samples Using a Carbon Nanotube Modified Electrode. In Journal of Agricultural and Food Chemistry; 2011; Vol. 59, pp. 7620–7625.
  • [26] Chekin, F.; Bagheri, S.; Bee, S.; Hamid, A. Glassy Carbon Electrodes Modified with Gelatin Functionalized Reduced Graphene Oxide Nanosheet for Determination of Gallic Acid; 2015; Vol. 38.
  • [27] Puangjan, A.; Chaiyasith, S. An Efficient ZrO2/Co3O4/Reduced Graphene Oxide Nanocomposite Electrochemical Sensor for Simultaneous Determination of Gallic Acid, Caffeic Acid and Protocatechuic Acid Natural Antioxidants. Electrochim Acta, 2016, 211, 273–288.
There are 27 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry, Sensor Technology
Journal Section Makaleler
Authors

Çağrı Ceylan Koçak 0000-0001-9928-8806

Early Pub Date October 30, 2025
Publication Date November 3, 2025
Submission Date May 21, 2025
Acceptance Date September 20, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Koçak, Ç. C. (2025). Composite Metal Oxide Modified–Graphene Oxide Electrode for Gallic Acid Determination. Erzincan University Journal of Science and Technology, 18(3), 817-827.