Research Article
BibTex RIS Cite

Lepton Flavor Violating Tau Decays in The Constrained MSSM-Seesaw Model

Year 2025, Volume: 18 Issue: 3, 842 - 857

Abstract

Abstract
The flavor violation of leptons may occur in specific particle interactions, a phenomenon referred to as lepton flavor violation (LFV). Within the Standard Model of particle physics (SM), lepton flavors are predicted to be strictly conserved. Thus, any observed violations could provide significant insights into physics beyond the Standard Model (BSM). This research focuses on examining LFV in tau decays to one electron and two muons, specifically within the framework of supersymmetric models (SUSY), such as the Constrained Minimal Supersymmetric (CMSSM) models extended by the Seesaw Type-I mechanism. The CMSSM model integrates right-handed neutrino fields and the seesaw mechanism to offer explanations for phenomena including neutrino masses [1]. The primary objective is to conduct a phenomenological analysis of LFV in tau decays in these channels: τ^- ⟶ e^- e^+ e^-, τ^- ⟶ μ^- μ^+ μ^-, τ^- ⟶ e^- μ^+ μ^-, τ^- ⟶ μ^- e^+ e^-, τ^- ⟶ e^+ μ^- μ^-, τ^- ⟶ μ^+ e^- e^- .These channels are crucial for exploring the interplay between LFV, the seesaw mechanism, and supersymmetry. All are characterized by a zero hypercharge (Y=0), conforming to the gauge symmetry SU (3) _C × SU (2) _L × U (1) _Y as (1, 3, 0). This expansion utilizes the seesaw mechanism to facilitate the exploration of neutrino mass eigenstates, suggesting a New Physics scale on the order of ~10^14 GeV. We meticulously calibrated the parameters using the latest experimental constraints on the masses of sleptons, charginos, neutralinos, and sneutrinos. The grand unification scale (M_GUT) is fixed at 2×1016 GeV, and the supersymmetry breaking scale (M_susy) is set at 103 GeV.

References

  • 1. Antusch S, Arganda E, Herrero MJ, Teixeira AM. “LFV in tau and muon decays within SUSY seesaw.” arXiv:hep-ph/0610439. Published online 2006.
  • 2. Ilakovac A, Pilaftsis A. “Flavour-violating charged lepton decays in seesaw-type models.” Nucl Phys B. 1995;437(3):491–526. arXiv:hep-ph/9403398.
  • 3. Abada A, Alonso R, De Romeri V, Vicente A. “Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution.” JHEP. 2014;2014(4):1–36. arXiv:1401.4266.
  • 4. Wang W, Zhang Z, Wang Z. “RG evolution and lepton flavor violation in Type-I seesaw.” Eur Phys J C. 2015;75(12):597. arXiv:1509.05388.
  • 5. Hisano J, Moroi T, Tobe K, Yamaguchi M. Lepton-flavor violation via right-handed neu-trino Yukawa couplings in supersymmetric standard model. Phys Rev D. 1996;53(5):2442–2459.
  • 6. Hayasaka K, Inami K, Miyazaki Y. Search for lepton flavor violating Tau decays into three leptons with 719 million produced Tau⁺Tau⁻ pairs. Phys Lett B. 2010; 687:139–143.
  • 7. Aushev T, Bartel W, Bondar A, Brodzicka J, Browder TE, Chang P, et al. Physics at super B factory. arXiv [Preprint]. arXiv:1002.5012.
  • 8. Arganda E, Herrero MJ. “Lepton flavour violation in constrained MSSM-seesaw mod-els”. arXiv08100160. Published online 2008.
  • 9. J. Masias, N. Cerna-Velazco, J. Jones-Perez, and W. Porod. “Resolving a challenging supersymmetric low-scale seesaw scenario at the ILC”, Phys. Rev. D 103, 115028 (2021)
  • 10. Hirsch M,Joaquim F,Vicente A. ”Constrained SUSY seesaws with a 125 GeV Higgs”, Journal of High Energy Physics (2012) 2012(11), 10.1007/JHEP11(2012)105.
  • 11. I.J.R. Aitchison and A.J.G. Hey. “Gauge Theories in Particle Physics”, Volume 2 (Taylor & Francis, 2013)
  • 12. Jones, J. L. “Gauge coupling unification in MSSM + 5 flavors”. Physical Review D, 79(7), 075009 (2008).
  • 13. Goto T, Okada Y, Shindou T, Tanaka M, Watanabe R. “Lepton flavor violation in the supersymmetric seesaw model after the LHC 8 TeV run”. Phys Rev D. 2015;91(3):33007.
  • 14. Srednicki, Mark. “Quantum field theory. Cambridge University Press, 2007”, Chapter 22
  • 15. Girrbach J, Mertens S, Nierste U, Wiesenfeldt S. “Lepton flavour violation in the MSSM”. J High Energy Phys. 2010;2010(5):1-48.
  • 16. Berezinsky, V., and Kachelriess, M. "Monte Carlo simulation for jet fragmentation in SUSY-QCD." CERN-TH 2000-232, IFIC/00-49. arXiv preprint hep-ph/0009053, 2000.
  • 17. Wang, Y., Zhang, D., & Zhou, S. (2023). “Complete one-loop renormalization-group equations in the seesaw effective field theories”. arXiv preprint arXiv:2302.08140
  • 18. J. F. Kamenik and M. Nemevšek. “Lepton flavor violation in type I+ III seesaw,” J. High Energy Phys., vol. 2009, no. 11, p. 23, 2009
  • 19. V. Brdar, A. J. Helmboldt, S. Iwamoto, and K. Schmitz. “Type I seesaw mechanism as the common origin of neutrino mass, baryon asymmetry, and the electroweak scale,” Phys. Rev. D, vol. 100, no. 7, p. 75029, 2019.
  • 20. G. Cvetič, C. Dib, C. S. Kim, and J. D. Kim. Phys. Rev. D 66, 034008 – Published 13 August 2002; Erratum Phys. Rev. D 68, 059901 (2003)
  • 21. A. Abada, D. Das, A. Vicente, and C. Weiland. “Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution,” J. High Energy Phys., vol. 2012, no. 9, pp. 1–34, 2012.
  • 22. K. Hayasaka, et al. “Search for Lepton Flavor Violating τ Decays into Three Leptons with 719 million Produced τ+τ- Pairs”, Phys. Lett. B687 (2010) 139.
  • 23. E. Arganda and M. J. Herrero, Phys.Rev. D73 (2006), 055003, [hep-ph/0510405]
  • 24. Goodsell, M.D., Nickel, K. & Staub, F., “Two-loop Higgs mass calculations in super-symmetric models beyond the MSSM with SARAH and SPheno”, Eur. Phys. J. C 75, 32 (2015).
  • 25. Bernigaud, J., Forster, A.K., Herrmann, B., et al, “Data-driven analysis of a SUSY GUT of flavour”, J. High Energ. Phys. 2022, 156 (2022).
  • 26. Staub, F., Computer.Physics.Commun. 181, 1077–1086 (2010) https://doi.org/ 10.1016/j.cpc.2010.01.011 arXiv:0909.2863 [hep-ph]
  • 27. Staub, F., Computer.Physics.Commun. 185, 1773–1790 (2014) https://doi.org/ 10.1016/j.cpc.2014.02.018 arXiv:1309.7223 [hep-ph]
  • 28. Goodsell, M.D., Nickel, K., Staub, F., Eur. Phys. J. C 75 (2015) https://doi. org/10.1140/epjc/s10052-014-3247-y arXiv:1411.0675 [hep-ph]
  • 29. Bernigaud, J., Forster, A.K., Herrmann, B., King, S.F., Porod, W., Rowley, S.J., J. High Energ. Phys. 2022 (2022) https://doi.org/10.1007/JHEP05(2022)156 arXiv:2111.10199 [hep-ph]
  • 30. Porod, W., Staub, F., Vicente, A., Eur. Phys. J. C 74 (2014) https://doi.org/ 10.1140/epjc/s10052-014-2992-2 arXiv:1405.1434 [hep-ph]
  • 31. Bi, X.-J., Dei, Y.-B., Qi, X.-Y., Phys. Rev. D 63, 096008 (2001) https://doi.org/ 10.1103/PhysRevD.63.096008, arXiv:hep-ph/0010270 [hep-ph]
  • 32. Navas, S., (Particle Data Group), Phys. Rev. D 110, 030001 (2024) https://doi. org/10.1103/PhysRevD.110.030001

Sınırlandırılmış MSSM-Seesaw Modelinde Tau Bozunmalarını İhlal Eden Lepton Lezzeti

Year 2025, Volume: 18 Issue: 3, 842 - 857

Abstract

Lepton Lezzet Korunumunun İhlali (LFV) belirli parçacık etkileşimlerinde meydana gelebilecek bir olgudur. Standart Parçacık Fiziği Modeli'ne (SM) göre, lepton lezzetlerinin kesin olarak korunması öngörülmektedir. Bu nedenle, gözlemlenecek herhangi bir ihlal, Standart Model ötesi (BSM) fiziğe dair önemli ipuçları sağlayabilir. Bu çalışma, süpersimetrik modeller (SUSY), özellikle Tip-I Seesaw mekanizması ile genişletilmiş Kısıtlı Minimal Süpersimetrik Standart Model (CMSSM) çerçevesinde, bir elektron ve iki müon içeren tau bozunmalarında lepton lezzet ihlali (LFV) olasılığını incelemeye odaklanmaktadır. CMSSM modeli, sağ elli nötrino alanlarını ve seesaw mekanizmasını entegre ederek nötrino kütleleri gibi fenomenlere açıklık getirmeyi amaçlamaktadır [1]. Çalışmanın temel hedefi, aşağıdaki kanallarda gerçekleşen tau bozunmalarındaki LFV olaylarının fenomenolojik analizini yapmaktır: τ^- ⟶ e^- e^+ e^-, τ^- ⟶ μ^- μ^+ μ^-, τ^- ⟶ e^- μ^+ μ^-, τ^- ⟶ μ^- e^+ e^-, τ^- ⟶ e^+ μ^- μ^-, τ^- ⟶ μ^+ e^- e^-. Bu bozunma kanalları, LFV, seesaw mekanizması ve süpersimetri arasındaki etkileşimi araştırmak için kritik öneme sahiptir. Bu süreçlerin tümü, SU (3) _C × SU (2) _L × U (1) _Y gösterimiyle (1, 3, 0) olacak şekilde hiper yükü sıfır (Y=0) olan yapılarla tanımlanmıştır. Bu genişletilmiş model, nötrino kütle öz durumlarının araştırılmasını kolaylaştırmak için seesaw mekanizmasından yararlanmaktadır ve yaklaşık 10¹⁴ GeV düzeyinde bir Yeni Fizik ölçeği önermektedir. Slepton, chargino, nötralino ve sneutrino kütlelerine dair en güncel deneysel kısıtlamalar göz önüne alınarak model parametreleri titizlikle kalibre edilmiştir. Büyük birleşme ölçeği (M_GUT) 2×10¹⁶ GeV olarak, süpersimetri kırılma ölçeği (M_susy) ise 10³ GeV olarak sabitlenmiştir.

References

  • 1. Antusch S, Arganda E, Herrero MJ, Teixeira AM. “LFV in tau and muon decays within SUSY seesaw.” arXiv:hep-ph/0610439. Published online 2006.
  • 2. Ilakovac A, Pilaftsis A. “Flavour-violating charged lepton decays in seesaw-type models.” Nucl Phys B. 1995;437(3):491–526. arXiv:hep-ph/9403398.
  • 3. Abada A, Alonso R, De Romeri V, Vicente A. “Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution.” JHEP. 2014;2014(4):1–36. arXiv:1401.4266.
  • 4. Wang W, Zhang Z, Wang Z. “RG evolution and lepton flavor violation in Type-I seesaw.” Eur Phys J C. 2015;75(12):597. arXiv:1509.05388.
  • 5. Hisano J, Moroi T, Tobe K, Yamaguchi M. Lepton-flavor violation via right-handed neu-trino Yukawa couplings in supersymmetric standard model. Phys Rev D. 1996;53(5):2442–2459.
  • 6. Hayasaka K, Inami K, Miyazaki Y. Search for lepton flavor violating Tau decays into three leptons with 719 million produced Tau⁺Tau⁻ pairs. Phys Lett B. 2010; 687:139–143.
  • 7. Aushev T, Bartel W, Bondar A, Brodzicka J, Browder TE, Chang P, et al. Physics at super B factory. arXiv [Preprint]. arXiv:1002.5012.
  • 8. Arganda E, Herrero MJ. “Lepton flavour violation in constrained MSSM-seesaw mod-els”. arXiv08100160. Published online 2008.
  • 9. J. Masias, N. Cerna-Velazco, J. Jones-Perez, and W. Porod. “Resolving a challenging supersymmetric low-scale seesaw scenario at the ILC”, Phys. Rev. D 103, 115028 (2021)
  • 10. Hirsch M,Joaquim F,Vicente A. ”Constrained SUSY seesaws with a 125 GeV Higgs”, Journal of High Energy Physics (2012) 2012(11), 10.1007/JHEP11(2012)105.
  • 11. I.J.R. Aitchison and A.J.G. Hey. “Gauge Theories in Particle Physics”, Volume 2 (Taylor & Francis, 2013)
  • 12. Jones, J. L. “Gauge coupling unification in MSSM + 5 flavors”. Physical Review D, 79(7), 075009 (2008).
  • 13. Goto T, Okada Y, Shindou T, Tanaka M, Watanabe R. “Lepton flavor violation in the supersymmetric seesaw model after the LHC 8 TeV run”. Phys Rev D. 2015;91(3):33007.
  • 14. Srednicki, Mark. “Quantum field theory. Cambridge University Press, 2007”, Chapter 22
  • 15. Girrbach J, Mertens S, Nierste U, Wiesenfeldt S. “Lepton flavour violation in the MSSM”. J High Energy Phys. 2010;2010(5):1-48.
  • 16. Berezinsky, V., and Kachelriess, M. "Monte Carlo simulation for jet fragmentation in SUSY-QCD." CERN-TH 2000-232, IFIC/00-49. arXiv preprint hep-ph/0009053, 2000.
  • 17. Wang, Y., Zhang, D., & Zhou, S. (2023). “Complete one-loop renormalization-group equations in the seesaw effective field theories”. arXiv preprint arXiv:2302.08140
  • 18. J. F. Kamenik and M. Nemevšek. “Lepton flavor violation in type I+ III seesaw,” J. High Energy Phys., vol. 2009, no. 11, p. 23, 2009
  • 19. V. Brdar, A. J. Helmboldt, S. Iwamoto, and K. Schmitz. “Type I seesaw mechanism as the common origin of neutrino mass, baryon asymmetry, and the electroweak scale,” Phys. Rev. D, vol. 100, no. 7, p. 75029, 2019.
  • 20. G. Cvetič, C. Dib, C. S. Kim, and J. D. Kim. Phys. Rev. D 66, 034008 – Published 13 August 2002; Erratum Phys. Rev. D 68, 059901 (2003)
  • 21. A. Abada, D. Das, A. Vicente, and C. Weiland. “Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution,” J. High Energy Phys., vol. 2012, no. 9, pp. 1–34, 2012.
  • 22. K. Hayasaka, et al. “Search for Lepton Flavor Violating τ Decays into Three Leptons with 719 million Produced τ+τ- Pairs”, Phys. Lett. B687 (2010) 139.
  • 23. E. Arganda and M. J. Herrero, Phys.Rev. D73 (2006), 055003, [hep-ph/0510405]
  • 24. Goodsell, M.D., Nickel, K. & Staub, F., “Two-loop Higgs mass calculations in super-symmetric models beyond the MSSM with SARAH and SPheno”, Eur. Phys. J. C 75, 32 (2015).
  • 25. Bernigaud, J., Forster, A.K., Herrmann, B., et al, “Data-driven analysis of a SUSY GUT of flavour”, J. High Energ. Phys. 2022, 156 (2022).
  • 26. Staub, F., Computer.Physics.Commun. 181, 1077–1086 (2010) https://doi.org/ 10.1016/j.cpc.2010.01.011 arXiv:0909.2863 [hep-ph]
  • 27. Staub, F., Computer.Physics.Commun. 185, 1773–1790 (2014) https://doi.org/ 10.1016/j.cpc.2014.02.018 arXiv:1309.7223 [hep-ph]
  • 28. Goodsell, M.D., Nickel, K., Staub, F., Eur. Phys. J. C 75 (2015) https://doi. org/10.1140/epjc/s10052-014-3247-y arXiv:1411.0675 [hep-ph]
  • 29. Bernigaud, J., Forster, A.K., Herrmann, B., King, S.F., Porod, W., Rowley, S.J., J. High Energ. Phys. 2022 (2022) https://doi.org/10.1007/JHEP05(2022)156 arXiv:2111.10199 [hep-ph]
  • 30. Porod, W., Staub, F., Vicente, A., Eur. Phys. J. C 74 (2014) https://doi.org/ 10.1140/epjc/s10052-014-2992-2 arXiv:1405.1434 [hep-ph]
  • 31. Bi, X.-J., Dei, Y.-B., Qi, X.-Y., Phys. Rev. D 63, 096008 (2001) https://doi.org/ 10.1103/PhysRevD.63.096008, arXiv:hep-ph/0010270 [hep-ph]
  • 32. Navas, S., (Particle Data Group), Phys. Rev. D 110, 030001 (2024) https://doi. org/10.1103/PhysRevD.110.030001
There are 32 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Makaleler
Authors

Vael Hajahmad 0000-0003-1491-0446

Mahmoud Albari 0000-0002-0700-5731

Ali Ercan Ekinci 0009-0002-8862-2332

Early Pub Date October 30, 2025
Publication Date November 8, 2025
Submission Date June 20, 2025
Acceptance Date July 29, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Hajahmad, V., Albari, M., & Ekinci, A. E. (2025). Lepton Flavor Violating Tau Decays in The Constrained MSSM-Seesaw Model. Erzincan University Journal of Science and Technology, 18(3), 842-857.