Research Article
BibTex RIS Cite

COVID-19 SPREAD IN REGIONS OF ITALY: EXPOLATORY SPATIAL DATA ANALYSIS

Year 2021, , 1432 - 1442, 01.07.2021
https://doi.org/10.17755/esosder.812145

Abstract

References

  • Anselin L, Syabri I, Smirnov O (2002). Visualising multivariate spatial correlation with dynamically linked windows. In Anselin L, Rey S (eds.), New tools for spatial data analysis: proceedings of the specialist meeting, Center for Spatially Integrated Social Science (CSISS), University of California, Santa Barbara, CD-ROM.
  • Boots BN, Getis (1998). A: Point Pattern Analysis. Newbury Park, CA: Sage Publications.
  • Briscese, G., Lacetera, N., Macis, M., & Tonin, M. (2020). Compliance with covid-19 social-distancing measures in italy: the role of expectations and duration (No. w26916). National Bureau of Economic Research.
  • Cliff AC, Ord JK (1973). Spatial Autocorrelation. London: Pion Limited.
  • Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192.
  • Fung, T. S., & Liu, D. X. (2019). Human coronavirus: host-pathogen interaction. Annual review of microbiology, 73, 529-557.
  • Griffith DA, Chun Y (2014). Spatial autocorrelation and spatial _ltering. In: Fischer MM, Nijkamp P (eds), Handbook of Regional Science. Springer, Berlin Heidelberg, 1477-1508.
  • Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., ... & Haque, U. (2020). The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned?. International journal of epidemiology.
  • Zhong, N. S., Zheng, B. J., Li, Y. M., Poon, L. L. M., Xie, Z. H., Chan, K. H., ... & Liu, X. Q. (2003). Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. The Lancet, 362(9393), 1353-1358.
  • Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology, 200490.
  • Al-Ahmadi, K. H., Alahmadi, M. H., Al-Zahrani, A. S., & Hemida, M. G. (2020). Spatial variability of Middle East respiratory syndrome coronavirus survival rates and mortality hazard in Saudi Arabia, 2012–2019. PeerJ, 8, e9783.
  • Kang, D., Choi, H., Kim, J. H., & Choi, J. (2020). Spatial epidemic dynamics of the COVID-19 outbreak in China. International Journal of Infectious Diseases, 94, 96-102.
  • Meng, B., Wang, J., Liu, J., Wu, J., & Zhong, E. (2005). Understanding the spatial diffusion process of severe acute respiratory syndrome in Beijing. Public Health, 119(12), 1080-1087.
  • Fang, L. Q., De Vlas, S. J., Feng, D., Liang, S., Xu, Y. F., Zhou, J. P., ... & Cao, W. C. (2009). Geographical spread of SARS in mainland China. Tropical Medicine & International Health, 14, 14-20.
  • Malcolm, B. L. (2014). The spread process of epidemic influenza in the continental United States, 1968–2008. Spatial and spatio-temporal epidemiology, 8, 35-45.
  • Hafeez, S., Amin, M., & Munir, B. A. (2017). Spatial mapping of temporal risk to improve prevention measures: a case study of dengue epidemic in Lahore. Spatial and spatio-temporal epidemiology, 21, 77-85.
  • Olugasa, B. O., Dogba, J. B., Ogunro, B., Odigie, E. A., Nykoi, J., Ojo, J. F., ... & Fasunla, A. J. (2014). The rubber plantation environment and Lassa fever epidemics in Liberia, 2008–2012: A spatial regression. Spatial and spatio-temporal epidemiology, 11, 163-174.
  • Lee, S. S., & Wong, N. S. (2011). The clustering and transmission dynamics of pandemic influenza A (H1N1) 2009 cases in Hong Kong. Journal of Infection, 63(4), 274-280.
  • Dhewantara, P. W., Marina, R., Puspita, T., Ariati, Y., Purwanto, E., Hananto, M., ... & Magalhaes, R. J. S. (2019). Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Medicine and Infectious Disease, 32, 101437.

İTALYA’DA COVID-19’UN BÖLGELER ARASI YAYILIMI: KEŞFEDİCİ MEKANSAL VERİ ANALİZİ

Year 2021, , 1432 - 1442, 01.07.2021
https://doi.org/10.17755/esosder.812145

Abstract

Bu çalışmada COVID-19 bulaşıcı hastalığının birbirine komşu olan bölgeler arasında yayılma durumu mekansal bağımlılık istatistiği Moran I ile araştırılmıştır. Ayrıca bu çalışma ile komşu bölgeler arasındaki geçişlerin kısıtlanmasının öneminin ortaya konması hedeflenmiştir. Bu amaçla, İtalyanın 20 bölgesine ait veriler kullanılarak tek değişkenli ve iki değişkenli Global ve Local Moran I istatistikleri hesaplanmıştır. Tek değişkenli Moran I istatistiğinin sonucuna göre, bölgeler arasında sınır geçişleri yasaklanmadan önce COVID-19 bulaşıcı hastalığının komşular arasında yayıldığı sonucuna ulaşılmıştır. İki değişkenli Moran I istatistiği ile mekansal yayılmanın gecikmeli etkisi araştırılmıştır. Iki değişkenli Moran I istatistiğinin sonucuna göre ise ilk 14 günde komşu bölgelerde ortaya çıkan toplam vaka sayısının ikinci 14 gündeki toplam vaka sayısının nedenlerinden biri olduğu söylenebilir. Bu bulgular neticesinde iller veya bölgeler arası geçilerin daha erken durdurulması ile COVİD-19 gibi bulaşıcı hastalıkların çok hızlı yayılmasının engellenebileceği söylenebilir.

References

  • Anselin L, Syabri I, Smirnov O (2002). Visualising multivariate spatial correlation with dynamically linked windows. In Anselin L, Rey S (eds.), New tools for spatial data analysis: proceedings of the specialist meeting, Center for Spatially Integrated Social Science (CSISS), University of California, Santa Barbara, CD-ROM.
  • Boots BN, Getis (1998). A: Point Pattern Analysis. Newbury Park, CA: Sage Publications.
  • Briscese, G., Lacetera, N., Macis, M., & Tonin, M. (2020). Compliance with covid-19 social-distancing measures in italy: the role of expectations and duration (No. w26916). National Bureau of Economic Research.
  • Cliff AC, Ord JK (1973). Spatial Autocorrelation. London: Pion Limited.
  • Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192.
  • Fung, T. S., & Liu, D. X. (2019). Human coronavirus: host-pathogen interaction. Annual review of microbiology, 73, 529-557.
  • Griffith DA, Chun Y (2014). Spatial autocorrelation and spatial _ltering. In: Fischer MM, Nijkamp P (eds), Handbook of Regional Science. Springer, Berlin Heidelberg, 1477-1508.
  • Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., ... & Haque, U. (2020). The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned?. International journal of epidemiology.
  • Zhong, N. S., Zheng, B. J., Li, Y. M., Poon, L. L. M., Xie, Z. H., Chan, K. H., ... & Liu, X. Q. (2003). Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. The Lancet, 362(9393), 1353-1358.
  • Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology, 200490.
  • Al-Ahmadi, K. H., Alahmadi, M. H., Al-Zahrani, A. S., & Hemida, M. G. (2020). Spatial variability of Middle East respiratory syndrome coronavirus survival rates and mortality hazard in Saudi Arabia, 2012–2019. PeerJ, 8, e9783.
  • Kang, D., Choi, H., Kim, J. H., & Choi, J. (2020). Spatial epidemic dynamics of the COVID-19 outbreak in China. International Journal of Infectious Diseases, 94, 96-102.
  • Meng, B., Wang, J., Liu, J., Wu, J., & Zhong, E. (2005). Understanding the spatial diffusion process of severe acute respiratory syndrome in Beijing. Public Health, 119(12), 1080-1087.
  • Fang, L. Q., De Vlas, S. J., Feng, D., Liang, S., Xu, Y. F., Zhou, J. P., ... & Cao, W. C. (2009). Geographical spread of SARS in mainland China. Tropical Medicine & International Health, 14, 14-20.
  • Malcolm, B. L. (2014). The spread process of epidemic influenza in the continental United States, 1968–2008. Spatial and spatio-temporal epidemiology, 8, 35-45.
  • Hafeez, S., Amin, M., & Munir, B. A. (2017). Spatial mapping of temporal risk to improve prevention measures: a case study of dengue epidemic in Lahore. Spatial and spatio-temporal epidemiology, 21, 77-85.
  • Olugasa, B. O., Dogba, J. B., Ogunro, B., Odigie, E. A., Nykoi, J., Ojo, J. F., ... & Fasunla, A. J. (2014). The rubber plantation environment and Lassa fever epidemics in Liberia, 2008–2012: A spatial regression. Spatial and spatio-temporal epidemiology, 11, 163-174.
  • Lee, S. S., & Wong, N. S. (2011). The clustering and transmission dynamics of pandemic influenza A (H1N1) 2009 cases in Hong Kong. Journal of Infection, 63(4), 274-280.
  • Dhewantara, P. W., Marina, R., Puspita, T., Ariati, Y., Purwanto, E., Hananto, M., ... & Magalhaes, R. J. S. (2019). Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Medicine and Infectious Disease, 32, 101437.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Operation
Journal Section Research Article
Authors

Fatma Zeren 0000-0002-3817-6349

Veli Yılancı 0000-0001-5738-690X

Hüseyin İşlek 0000-0001-7848-6299

Publication Date July 1, 2021
Submission Date October 26, 2020
Published in Issue Year 2021

Cite

APA Zeren, F., Yılancı, V., & İşlek, H. (2021). İTALYA’DA COVID-19’UN BÖLGELER ARASI YAYILIMI: KEŞFEDİCİ MEKANSAL VERİ ANALİZİ. Elektronik Sosyal Bilimler Dergisi, 20(79), 1432-1442. https://doi.org/10.17755/esosder.812145

   21765     

Elektronik Sosyal Bilimler Dergisi (Electronic Journal of Social Sciences), Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

ESBD Elektronik Sosyal Bilimler Dergisi (Electronic Journal of Social Sciences), Türk Patent ve Marka Kurumu tarafından tescil edilmiştir. Marka No:2011/119849.