Research Article
BibTex RIS Cite

MULTI-LEVEL CLASSIFICATION BASED ON DEEP LEARNING FOR ACCURATE RISK STRATIFICATION OF ARRHYTHMIAS

Year 2024, Volume: 25 Issue: 3, 442 - 455, 30.09.2024
https://doi.org/10.18038/estubtda.1466349

Abstract

Arrhythmias, also known as irregular heartbeats, are important health problems that must be accurately identified to diagnose and treat cardiovascular disease. Within the scope of this study, a network for classifying arrhythmias, which are important in the diagnosis and treatment of cardiovascular diseases, was proposed by using one-dimensional convolutional neural network (1D CNN), one of the deep learning techniques. With the proposed 1D-CNN architecture, arrhythmia types and normal rhythm ECGs were subjected to a more detailed examination from general to specific according to urgency situations. In the classifications made, first of all, a binary classification was made and an evaluation was made as whether there was a life risk or not. In triple, quadruple and six-fold classification, the detection of arrhythmia status is detailed. More complex classifications have helped to define different types of arrhythmias in more detail. This study proposes a deep learning network for automatic identification and classification of arrhythmias and shows that different arrhythmia conditions can be diagnosed with a single network model by applying the proposed network structure to multi-class arrhythmia disorders.

References

  • [1] Tada H, Fujino N, Nomura A, et al. Personalized medicine for cardiovascular diseases. J Hum Genet. 2021;66(1):67-74.
  • [2] Gaidai O, Cao Y, Loginov S. Global cardiovascular diseases death rate prediction. Curr Probl Cardiol. Published online 2023:101622.
  • [3] Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol. 2021;18(1):7-21.
  • [4] Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol. 2021;18(1):7-21.
  • [5] Buja LM, Willerson JT. The role of coronary artery lesions in ischemic heart disease: insights from recent clinicopathologic, coronary arteriographic, and experimental studies. Hum Pathol. 1987;18(5):451-461.
  • [6] Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197-210.
  • [7] LeWinter MM. Acute pericarditis. N Engl J Med. 2014;371(25):2410-2416.
  • [8] Wexler R, Elton T, Pleister A, Feldman D. Cardiomyopathy: an overview. Am Fam Physician. 2009;79(9):778.
  • [9] Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242-255.
  • [10] Agnelli G, Becattini C. Acute pulmonary embolism. N Engl J Med. 2010;363(3):266-274.
  • [11] Gawałko M, Balsam P, Lodziński P, et al. Cardiac arrhythmias in autoimmune diseases. Circ J. 2020;84(5):685-694.
  • [12] Yusupova NI, Bogdanov MR. Assessment of the Risk of Sudden Cardiac Death Using Machine Learning Methods. Pattern Recognit Image Anal. 2023;33(3):536-543.
  • [13] Galli A, Ambrosini F, Lombardi F. Holter monitoring and loop recorders: from research to clinical practice. Arrhythmia Electrophysiol Rev. 2016;5(2):136.
  • [14] Mikhaylov AY, Yumashev A V, Kolpak E. Quality of life, anxiety and depressive disorders in patients with extrasystolic arrhythmia. Arch Med Sci AMS. 2022;18(2):328.
  • [15] Nie L-Y, Wang X-D, Zhang T, Xue J. Cardiac complications in systemic sclerosis: early diagnosis and treatment. Chin Med J (Engl). 2019;132(23):2865-2871.
  • [16] Boulif A, Ananou B, Ouladsine M, Delliaux S. A Literature Review: ECG-Based Models for Arrhythmia Diagnosis Using Artificial Intelligence Techniques. Bioinform Biol Insights. 2023;17:11779322221149600.
  • [17] Liu J, Li Z, Jin Y, et al. A review of arrhythmia detection based on electrocardiogram with artificial intelligence. Expert Rev Med Devices. 2022;19(7):549-560.
  • [18] Aziz S, Ahmed S, Alouini M-S. ECG-based machine-learning algorithms for heartbeat classification. Sci Rep. 2021;11(1):18738.
  • [19] Sahoo S, Dash M, Behera S, Sabut S. Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. Irbm. 2020;41(4):185-194.
  • [20] Mohanty M, Sahoo S, Biswal P, Sabut S. Efficient classification of ventricular arrhythmias using feature selection and C4. 5 classifier. Biomed Signal Process Control. 2018;44:200-208.
  • [21] Rodríguez R, Mexicano A, Bila J, Ponce R, Cervantes S, Martinez A. Hilbert transform and neural networks for identification and modeling of ECG complex. In: Third International Conference on Innovative Computing Technology (INTECH 2013). IEEE; 2013:327-332.
  • [22] Martis RJ, Krishnan MMR, Chakraborty C, et al. Automated screening of arrhythmia using wavelet based machine learning techniques. J Med Syst. 2012;36:677-688.
  • [23] Devi RL, Kalaivani V. Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG. J Supercomput. 2020;76(9):6533-6544.
  • [24] Şahin Sadık E, SARAOĞLU HM, Canbaz Kabay S, Keskinkılıç C. Deep Learning-Based Approach for Classification Of Mental Tasks From Electroencephalogram Signals. Avicenna J Neuro Psycho Physiol. 2023;10(1):15-21.
  • [25] Ansari Y, Mourad O, Qaraqe K, Serpedin E. Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023. Front Physiol. 2023;14.
  • [26] Essa E, Xie X. An ensemble of deep learning-based multi-model for ECG heartbeats arrhythmia classification. ieee access. 2021;9:103452-103464.
  • [27] Parvaneh S, Rubin J, Babaeizadeh S, Xu-Wilson M. Cardiac arrhythmia detection using deep learning: A review. J Electrocardiol. 2019;57:S70-S74.
  • [28] Greenwald SD. The development and analysis of a ventricular fibrillation detector. Published online 1986.
  • [29] Manilo LA, Nemirko AP, Evdakova EG, Tatarinova AA. ECG Database for Evaluating the Efficiency of Recognizing Dangerous Arrhythmias. In: 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB). IEEE; 2021:120-123.
  • [30] Nemirko A, Manilo L, Tatarinova A, Alekseev B, Evdakova E. ECG fragment database for the exploration of dangerous arrhythmia. Published online 2022.
  • [31] Heydarian M, Doyle TE, Samavi R. MLCM: Multi-label confusion matrix. IEEE Access. 2022;10:19083-19095.
  • [32] Mathews SM, Kambhamettu C, Barner KE. A novel application of deep learning for single-lead ECG classification. Comput Biol Med. 2018;99:53-62.
  • [33] Prabhakararao E, Dandapat S. Multi-scale convolutional neural network ensemble for multi-class arrhythmia classification. IEEE J Biomed Heal Informatics. 2021;26(8):3802-3812.
  • [34] Yao Q, Fan X, Cai Y, Wang R, Yin L, Li Y. Time-incremental convolutional neural network for arrhythmia detection in varied-length electrocardiogram. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech. IEEE; 2018:754-761.
  • [35] Yao Q, Wang R, Fan X, Liu J, Li Y. Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network. Inf Fusion. 2020;53:174-182.
  • [36] Tripathy RK, Zamora-Mendez A, De la O Serna JA, Paternina MRA, Arrieta JG, Naik GR. Detection of life threatening ventricular arrhythmia using digital taylor fourier transform. Front Physiol. 2018;9:722.
  • [37] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018;100:270-278.
  • [38] Ebrahimzadeh E, Foroutan A, Shams M, et al. An optimal strategy for prediction of sudden cardiac death through a pioneering feature-selection approach from HRV signal. Comput Methods Programs Biomed. 2019;169:19-36.
  • [39] Popadina AO, Nemirko AP. Detection of Dangerous Arrhythmias Using a 1D Convolutional Neural Network Trained on the Full Spectrum of a Short ECG Signal. In: 2023 Seminar on Digital Medical and Environmental Systems and Tools (DMEST). IEEE; 2023:109-112.
Year 2024, Volume: 25 Issue: 3, 442 - 455, 30.09.2024
https://doi.org/10.18038/estubtda.1466349

Abstract

References

  • [1] Tada H, Fujino N, Nomura A, et al. Personalized medicine for cardiovascular diseases. J Hum Genet. 2021;66(1):67-74.
  • [2] Gaidai O, Cao Y, Loginov S. Global cardiovascular diseases death rate prediction. Curr Probl Cardiol. Published online 2023:101622.
  • [3] Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol. 2021;18(1):7-21.
  • [4] Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol. 2021;18(1):7-21.
  • [5] Buja LM, Willerson JT. The role of coronary artery lesions in ischemic heart disease: insights from recent clinicopathologic, coronary arteriographic, and experimental studies. Hum Pathol. 1987;18(5):451-461.
  • [6] Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197-210.
  • [7] LeWinter MM. Acute pericarditis. N Engl J Med. 2014;371(25):2410-2416.
  • [8] Wexler R, Elton T, Pleister A, Feldman D. Cardiomyopathy: an overview. Am Fam Physician. 2009;79(9):778.
  • [9] Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242-255.
  • [10] Agnelli G, Becattini C. Acute pulmonary embolism. N Engl J Med. 2010;363(3):266-274.
  • [11] Gawałko M, Balsam P, Lodziński P, et al. Cardiac arrhythmias in autoimmune diseases. Circ J. 2020;84(5):685-694.
  • [12] Yusupova NI, Bogdanov MR. Assessment of the Risk of Sudden Cardiac Death Using Machine Learning Methods. Pattern Recognit Image Anal. 2023;33(3):536-543.
  • [13] Galli A, Ambrosini F, Lombardi F. Holter monitoring and loop recorders: from research to clinical practice. Arrhythmia Electrophysiol Rev. 2016;5(2):136.
  • [14] Mikhaylov AY, Yumashev A V, Kolpak E. Quality of life, anxiety and depressive disorders in patients with extrasystolic arrhythmia. Arch Med Sci AMS. 2022;18(2):328.
  • [15] Nie L-Y, Wang X-D, Zhang T, Xue J. Cardiac complications in systemic sclerosis: early diagnosis and treatment. Chin Med J (Engl). 2019;132(23):2865-2871.
  • [16] Boulif A, Ananou B, Ouladsine M, Delliaux S. A Literature Review: ECG-Based Models for Arrhythmia Diagnosis Using Artificial Intelligence Techniques. Bioinform Biol Insights. 2023;17:11779322221149600.
  • [17] Liu J, Li Z, Jin Y, et al. A review of arrhythmia detection based on electrocardiogram with artificial intelligence. Expert Rev Med Devices. 2022;19(7):549-560.
  • [18] Aziz S, Ahmed S, Alouini M-S. ECG-based machine-learning algorithms for heartbeat classification. Sci Rep. 2021;11(1):18738.
  • [19] Sahoo S, Dash M, Behera S, Sabut S. Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. Irbm. 2020;41(4):185-194.
  • [20] Mohanty M, Sahoo S, Biswal P, Sabut S. Efficient classification of ventricular arrhythmias using feature selection and C4. 5 classifier. Biomed Signal Process Control. 2018;44:200-208.
  • [21] Rodríguez R, Mexicano A, Bila J, Ponce R, Cervantes S, Martinez A. Hilbert transform and neural networks for identification and modeling of ECG complex. In: Third International Conference on Innovative Computing Technology (INTECH 2013). IEEE; 2013:327-332.
  • [22] Martis RJ, Krishnan MMR, Chakraborty C, et al. Automated screening of arrhythmia using wavelet based machine learning techniques. J Med Syst. 2012;36:677-688.
  • [23] Devi RL, Kalaivani V. Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG. J Supercomput. 2020;76(9):6533-6544.
  • [24] Şahin Sadık E, SARAOĞLU HM, Canbaz Kabay S, Keskinkılıç C. Deep Learning-Based Approach for Classification Of Mental Tasks From Electroencephalogram Signals. Avicenna J Neuro Psycho Physiol. 2023;10(1):15-21.
  • [25] Ansari Y, Mourad O, Qaraqe K, Serpedin E. Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023. Front Physiol. 2023;14.
  • [26] Essa E, Xie X. An ensemble of deep learning-based multi-model for ECG heartbeats arrhythmia classification. ieee access. 2021;9:103452-103464.
  • [27] Parvaneh S, Rubin J, Babaeizadeh S, Xu-Wilson M. Cardiac arrhythmia detection using deep learning: A review. J Electrocardiol. 2019;57:S70-S74.
  • [28] Greenwald SD. The development and analysis of a ventricular fibrillation detector. Published online 1986.
  • [29] Manilo LA, Nemirko AP, Evdakova EG, Tatarinova AA. ECG Database for Evaluating the Efficiency of Recognizing Dangerous Arrhythmias. In: 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB). IEEE; 2021:120-123.
  • [30] Nemirko A, Manilo L, Tatarinova A, Alekseev B, Evdakova E. ECG fragment database for the exploration of dangerous arrhythmia. Published online 2022.
  • [31] Heydarian M, Doyle TE, Samavi R. MLCM: Multi-label confusion matrix. IEEE Access. 2022;10:19083-19095.
  • [32] Mathews SM, Kambhamettu C, Barner KE. A novel application of deep learning for single-lead ECG classification. Comput Biol Med. 2018;99:53-62.
  • [33] Prabhakararao E, Dandapat S. Multi-scale convolutional neural network ensemble for multi-class arrhythmia classification. IEEE J Biomed Heal Informatics. 2021;26(8):3802-3812.
  • [34] Yao Q, Fan X, Cai Y, Wang R, Yin L, Li Y. Time-incremental convolutional neural network for arrhythmia detection in varied-length electrocardiogram. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech. IEEE; 2018:754-761.
  • [35] Yao Q, Wang R, Fan X, Liu J, Li Y. Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network. Inf Fusion. 2020;53:174-182.
  • [36] Tripathy RK, Zamora-Mendez A, De la O Serna JA, Paternina MRA, Arrieta JG, Naik GR. Detection of life threatening ventricular arrhythmia using digital taylor fourier transform. Front Physiol. 2018;9:722.
  • [37] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018;100:270-278.
  • [38] Ebrahimzadeh E, Foroutan A, Shams M, et al. An optimal strategy for prediction of sudden cardiac death through a pioneering feature-selection approach from HRV signal. Comput Methods Programs Biomed. 2019;169:19-36.
  • [39] Popadina AO, Nemirko AP. Detection of Dangerous Arrhythmias Using a 1D Convolutional Neural Network Trained on the Full Spectrum of a Short ECG Signal. In: 2023 Seminar on Digital Medical and Environmental Systems and Tools (DMEST). IEEE; 2023:109-112.
There are 39 citations in total.

Details

Primary Language English
Subjects Electronics
Journal Section Articles
Authors

Evin Şahin Sadık 0000-0002-2212-4210

Publication Date September 30, 2024
Submission Date April 7, 2024
Acceptance Date August 20, 2024
Published in Issue Year 2024 Volume: 25 Issue: 3

Cite

AMA Şahin Sadık E. MULTI-LEVEL CLASSIFICATION BASED ON DEEP LEARNING FOR ACCURATE RISK STRATIFICATION OF ARRHYTHMIAS. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. September 2024;25(3):442-455. doi:10.18038/estubtda.1466349