Araştırma Makalesi
BibTex RIS Kaynak Göster

A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION

Yıl 2020, , 247 - 256, 31.08.2020
https://doi.org/10.20290/estubtdb.633238

Öz

Al-p-Si-Al structures were fabricated and temperature dependent capacitance versus voltage measurements were performed in this study. The Al contacts were grown by the sputtering method and then capacitance-voltage characteristics of the devices were performed with forward and reverse biases. According to this measurements, the C-2 –V plots were conducted. With the help of those calculation, the barrier height vs temperature (ΦCV – T), the carrier concentration vs temperature (NA – T) and the depletion width vs temperature (w – T) graphs were plotted. In conclusion, it has been seen that the ΦCV and w decreased, and NA almost remained constant with increasing temperature.

Teşekkür

The author would like to express his sincere thanks to Prof. Abdulmecit Türüt and Prof. Hasan Efeoğlu for their many valuable contributions.

Kaynakça

  • [1] Mönch W. Metal-semiconductor contacts: electronic properties. Surface Science 1994; p. 928-944.
  • [2] Türüt, A and Köleli, F. Metallic polythiophene/inorganic semiconductor Schottky Diodes. Physica B, 1993; 192: 279-283.
  • [3] Çaldıran Z, Deniz AR, Aydoğan Ş, Yeşildağ A, Ekinci D. The barrier height enhancement of the Au/n-Si/Al Schottky barrier diode by electrochemically formed an organic Anthracene layer on n-Si. Superlattices and Microstructures. 2013; 56: 45-54.
  • [4] Çaldıran Z, Deniz AR, Şahin Y, Metin Ö, Meral K and Aydoğan Ş. The electrical characteristics of the Fe3O4/Si junctions. J. Alloys and Comp. 2013; 552: 437-442.
  • [5] Li, JG. Energetics of metal/ceramic interfaces, metal-semiconductor Schottky contacts, and their relationship. Materials Chemistry and Physics. 1997; 47: 126-145.
  • [6] Sze SM. Physics of Semiconductor Devices. 2nd ed. New York, USA: John Willy & Sons, 1981.
  • [7] Decker DR. Measurement of Epitaxial Doping Density vs. Depth. Journal of Electrochem. Soc. 1968; 115: 1085.
  • [8] Thomas CO, Kahng D and Manz RC. Impurity Distribution in Epitaxial Silicon Films. Journal of Electrochem. Soc. 1962; 109: p.1055.
  • [9] Sağlam M and Türüt A. Effect of thermal annealing in nitrogen on the I-V and C-V characteristics of Cr-Ni-Co alloy/LEC n-GaAs Schottky diodes. Semicond. Sci. Technol. 1997; 12: p.1028-1031.
  • [10] Wang L. and Nathan MI. High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN. Appl. Phys. Lett. 1996; 68: p.1267.
  • [11] Schmitz AC, Ping AT, AsifKhan M, Chen Q, Yang JW and Adesida I. Metal contacts to n-type GaN. Journal Electronic Mat. 1998; 27: p. 255.
  • [12] Kubota N, Ao JP, Kikuta D and Ohno Y. Schottky Barrier Height Determination by Capacitance-Voltage Measurement on n-GaN with Exponential Doping Profile. Jpn. J. Appl. Phys. 2004; 43: p.4159.
  • [13] Werner, JH and Güttler HH. Temperature dependence of Schottky barrier heights on silicon J. Appl. Phys. 1993; 73: p.1315.
  • [14] Saxena V, Jim JN and Steckel AJ. High-Voltage Ni– and Pt–SiC Schottky Diodes Utilizing Metal Field Plate Termination. IEEE Transactions On Electron Devices, 1999; 46-3.
  • [15] Karataş Ş, Altındal Ş, Türüt A and Özmen A. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. App. Surface Sci. 2003; 217: p.250-260.
  • [16] Türüt A, Yalçın N and Sağlam M. Parameter Extraction From Non-Ideal C-V Characteristics of A Schottky Diode With and Without Interfacial Layer. Solid-State Electronics 1992; Vol. 35, No. 6: p. 835-841.
  • [17] Kern, W. The Evolution of Silicon Wafer Cleaning Technology. Journal of Electrochem. Soc. 1990; Vol. 137, No. 6: p.1887.
  • [18] Mönch W. Semiconductor Surfaces and Interfaces, 2nd ed. Berlin, Germany: Springer, 1995.
  • [19] Sze SM and Kwok KN. Physics of Semiconductor Devices, 3rd ed. Hoboken: Wiley & Sons, Inc., 2006.
  • [20] Mccafferty PG, Sellai A, Dawson P and Elabd H. Barrier Characteristics of PtSi/p-Si Schottky Diodes. Solid-State Electronics 1996; 39: 583-592.
  • [21] Van der Ziel A. Solid State Physical Electronics. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1968.
  • [22] Aydoğan Ş, Sağlam M and Turut A. Some electrical properties of polyaniline/p-Si/Al structure at 300 K and 77 K temperatures. Microelectronic Engineering 2008; 85: 278–283.
  • [23] Ho PS, Yang ES, Evans HL and Wu X. Electronic states at silicide-silicon interfaces. Phys. Rev. Lett. 1986; 56: 177.
  • [24] Werner J, Levi AFJ, Tung RT, Anzlower M, and Pinto M. Origin of the excess capacitance at intimate Schottky contacts. Phys. Rev.Lett. 1988; 60: 53.
  • [25] Chattopadhyay P and Raychaudhri B. Origin of the anomalous peak in the forward capacitance-voltage plot of a Schottky barrier diode. Solid-State. Electron. 1992; 35: 875.
  • [26] Chattopadhyay P and Raychaudhri B. New technique for the determination of series resistance of Schottky barrier diodes. Solid-State. Electron. 1992;35: 1023.
  • [27] Chattopadhyay P and Raychaudhri B. Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid-State Electron. 1993;36: 605.
  • [28] Türüt A, Yalçın N and Sağlam M. Parameter extraction from non-ideal C−V characteristics of a Schottky diode with and without interfacial layer. Solid-State Electron. 1992; 35: 835.
  • [29] Zhu S, Van Meirhaeghe RL, Detavernier C, Ru GP, Li BZ, Cardon F. A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n-Si Schottky diodes. Solid-St Comm. 1999; 112: 611.
  • [30] Aboelfotoh MO. Electrical characteristics of Ti/Si(100) interfaces. J. Appl. Phys. 1988; 64: 4046.
  • [31] Aboelfotoh MO and Tu KM. Schottky-barrier heights of Ti and TiSi2 on n-type and p-type Si(100). Phys. Rev. B 1986; 34: 2311.
  • [32] Karataş Ş, Altındal Ş, Turut A, Özmen A. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. Appl. Surf. Sci. 2003; 217: 250.
  • [33] Rhoderick EH. The physics of Schottky barriers. J. Phys. D: Appl. Phys. 1970; 3: 1153.
  • [34] Chattopadhya P and Daw AN. On the current transport mechanism in a metal—insulator—semiconductor (MIS) diode. Solid-State Electron. 1986; 29: 555.
  • [35] Fonash SJ. A reevaluation of the meaning of capacitance plots for Schottky‐barrier‐type diodes. J. Appl. Phys. 1983; 54: 1966.
  • [36] Card HC and Rhoderick EH. Studies of tunnel MOS diodes II. Thermal equilibrium considerations. J. Phys. D Appl. Phys. 1971; 4: 1602.
  • [37] Singh A. Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation. Solid-State Electron. 1985; 28: 223.
  • [38] Rhoderick EH. Metal-Semiconductor Contacts, (Oxford University Press ,1978) p.121, 136.
  • [39] Türüt A, Sağlam M. Determination of the density of Si-metal interface states and excess capacitance caused by them. Physica B, 1992; 179: 285.
  • [40] Aboelfotoh MO. Temperature Dependence of The Schottky-Barrier Height of Tungsten on n-Type and p-Type Silicon. Solid-State Electronics. 1990; 34: No:1 53.
  • [41] Crowell CR, Sze SM and Spitzer WG. Equality of The Temperature Dependence of The Gold-Silicon Surface Barrier and The Silicon Energy Gap In Au n-type Si Diodes. Applied Physics Letters. 1964; 4: 92.
  • [42] Cola A, Vasanelli L and Muret P. A Method For The Determination of Barrier Heights From The Capacitance-Voltage Characteristics of A Schottky Junction Containing Bulk Deep Traps. Solid-State Electronics. 1995; Vol. 38, No. 5: 989-995.
  • [43] Karabulut A. Barrier height modification in Au/Ti/n-GaAs devices with a HfO2 interfacial layer formed by atomic layer deposition. Bull. Mater. Sci. 2019; 42:5.

A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION

Yıl 2020, , 247 - 256, 31.08.2020
https://doi.org/10.20290/estubtdb.633238

Öz

Al-p-Si-Al structures were
fabricated and temperature dependent capacitance versus voltage measurements
were performed in this study. The Al contacts were grown by the sputtering
method and then capacitance-voltage characteristics of the devices were
performed with forward and reverse biases. According to this measurements, the
C-2 vs V plots were conducted. With the help of those calculation,
the barrier height vs temperature (ΦCV
vs T), the carrier concentration vs temperature (NA vs T) and
the depletion width vs temperature (w
vs T) graphs were plotted. In
conclusion, it has been seen that the ΦCV
and w decreased, and NA remained constant with
increasing temperature.

0000-0001-8040-8054

Kaynakça

  • [1] Mönch W. Metal-semiconductor contacts: electronic properties. Surface Science 1994; p. 928-944.
  • [2] Türüt, A and Köleli, F. Metallic polythiophene/inorganic semiconductor Schottky Diodes. Physica B, 1993; 192: 279-283.
  • [3] Çaldıran Z, Deniz AR, Aydoğan Ş, Yeşildağ A, Ekinci D. The barrier height enhancement of the Au/n-Si/Al Schottky barrier diode by electrochemically formed an organic Anthracene layer on n-Si. Superlattices and Microstructures. 2013; 56: 45-54.
  • [4] Çaldıran Z, Deniz AR, Şahin Y, Metin Ö, Meral K and Aydoğan Ş. The electrical characteristics of the Fe3O4/Si junctions. J. Alloys and Comp. 2013; 552: 437-442.
  • [5] Li, JG. Energetics of metal/ceramic interfaces, metal-semiconductor Schottky contacts, and their relationship. Materials Chemistry and Physics. 1997; 47: 126-145.
  • [6] Sze SM. Physics of Semiconductor Devices. 2nd ed. New York, USA: John Willy & Sons, 1981.
  • [7] Decker DR. Measurement of Epitaxial Doping Density vs. Depth. Journal of Electrochem. Soc. 1968; 115: 1085.
  • [8] Thomas CO, Kahng D and Manz RC. Impurity Distribution in Epitaxial Silicon Films. Journal of Electrochem. Soc. 1962; 109: p.1055.
  • [9] Sağlam M and Türüt A. Effect of thermal annealing in nitrogen on the I-V and C-V characteristics of Cr-Ni-Co alloy/LEC n-GaAs Schottky diodes. Semicond. Sci. Technol. 1997; 12: p.1028-1031.
  • [10] Wang L. and Nathan MI. High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN. Appl. Phys. Lett. 1996; 68: p.1267.
  • [11] Schmitz AC, Ping AT, AsifKhan M, Chen Q, Yang JW and Adesida I. Metal contacts to n-type GaN. Journal Electronic Mat. 1998; 27: p. 255.
  • [12] Kubota N, Ao JP, Kikuta D and Ohno Y. Schottky Barrier Height Determination by Capacitance-Voltage Measurement on n-GaN with Exponential Doping Profile. Jpn. J. Appl. Phys. 2004; 43: p.4159.
  • [13] Werner, JH and Güttler HH. Temperature dependence of Schottky barrier heights on silicon J. Appl. Phys. 1993; 73: p.1315.
  • [14] Saxena V, Jim JN and Steckel AJ. High-Voltage Ni– and Pt–SiC Schottky Diodes Utilizing Metal Field Plate Termination. IEEE Transactions On Electron Devices, 1999; 46-3.
  • [15] Karataş Ş, Altındal Ş, Türüt A and Özmen A. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. App. Surface Sci. 2003; 217: p.250-260.
  • [16] Türüt A, Yalçın N and Sağlam M. Parameter Extraction From Non-Ideal C-V Characteristics of A Schottky Diode With and Without Interfacial Layer. Solid-State Electronics 1992; Vol. 35, No. 6: p. 835-841.
  • [17] Kern, W. The Evolution of Silicon Wafer Cleaning Technology. Journal of Electrochem. Soc. 1990; Vol. 137, No. 6: p.1887.
  • [18] Mönch W. Semiconductor Surfaces and Interfaces, 2nd ed. Berlin, Germany: Springer, 1995.
  • [19] Sze SM and Kwok KN. Physics of Semiconductor Devices, 3rd ed. Hoboken: Wiley & Sons, Inc., 2006.
  • [20] Mccafferty PG, Sellai A, Dawson P and Elabd H. Barrier Characteristics of PtSi/p-Si Schottky Diodes. Solid-State Electronics 1996; 39: 583-592.
  • [21] Van der Ziel A. Solid State Physical Electronics. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1968.
  • [22] Aydoğan Ş, Sağlam M and Turut A. Some electrical properties of polyaniline/p-Si/Al structure at 300 K and 77 K temperatures. Microelectronic Engineering 2008; 85: 278–283.
  • [23] Ho PS, Yang ES, Evans HL and Wu X. Electronic states at silicide-silicon interfaces. Phys. Rev. Lett. 1986; 56: 177.
  • [24] Werner J, Levi AFJ, Tung RT, Anzlower M, and Pinto M. Origin of the excess capacitance at intimate Schottky contacts. Phys. Rev.Lett. 1988; 60: 53.
  • [25] Chattopadhyay P and Raychaudhri B. Origin of the anomalous peak in the forward capacitance-voltage plot of a Schottky barrier diode. Solid-State. Electron. 1992; 35: 875.
  • [26] Chattopadhyay P and Raychaudhri B. New technique for the determination of series resistance of Schottky barrier diodes. Solid-State. Electron. 1992;35: 1023.
  • [27] Chattopadhyay P and Raychaudhri B. Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid-State Electron. 1993;36: 605.
  • [28] Türüt A, Yalçın N and Sağlam M. Parameter extraction from non-ideal C−V characteristics of a Schottky diode with and without interfacial layer. Solid-State Electron. 1992; 35: 835.
  • [29] Zhu S, Van Meirhaeghe RL, Detavernier C, Ru GP, Li BZ, Cardon F. A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n-Si Schottky diodes. Solid-St Comm. 1999; 112: 611.
  • [30] Aboelfotoh MO. Electrical characteristics of Ti/Si(100) interfaces. J. Appl. Phys. 1988; 64: 4046.
  • [31] Aboelfotoh MO and Tu KM. Schottky-barrier heights of Ti and TiSi2 on n-type and p-type Si(100). Phys. Rev. B 1986; 34: 2311.
  • [32] Karataş Ş, Altındal Ş, Turut A, Özmen A. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. Appl. Surf. Sci. 2003; 217: 250.
  • [33] Rhoderick EH. The physics of Schottky barriers. J. Phys. D: Appl. Phys. 1970; 3: 1153.
  • [34] Chattopadhya P and Daw AN. On the current transport mechanism in a metal—insulator—semiconductor (MIS) diode. Solid-State Electron. 1986; 29: 555.
  • [35] Fonash SJ. A reevaluation of the meaning of capacitance plots for Schottky‐barrier‐type diodes. J. Appl. Phys. 1983; 54: 1966.
  • [36] Card HC and Rhoderick EH. Studies of tunnel MOS diodes II. Thermal equilibrium considerations. J. Phys. D Appl. Phys. 1971; 4: 1602.
  • [37] Singh A. Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation. Solid-State Electron. 1985; 28: 223.
  • [38] Rhoderick EH. Metal-Semiconductor Contacts, (Oxford University Press ,1978) p.121, 136.
  • [39] Türüt A, Sağlam M. Determination of the density of Si-metal interface states and excess capacitance caused by them. Physica B, 1992; 179: 285.
  • [40] Aboelfotoh MO. Temperature Dependence of The Schottky-Barrier Height of Tungsten on n-Type and p-Type Silicon. Solid-State Electronics. 1990; 34: No:1 53.
  • [41] Crowell CR, Sze SM and Spitzer WG. Equality of The Temperature Dependence of The Gold-Silicon Surface Barrier and The Silicon Energy Gap In Au n-type Si Diodes. Applied Physics Letters. 1964; 4: 92.
  • [42] Cola A, Vasanelli L and Muret P. A Method For The Determination of Barrier Heights From The Capacitance-Voltage Characteristics of A Schottky Junction Containing Bulk Deep Traps. Solid-State Electronics. 1995; Vol. 38, No. 5: 989-995.
  • [43] Karabulut A. Barrier height modification in Au/Ti/n-GaAs devices with a HfO2 interfacial layer formed by atomic layer deposition. Bull. Mater. Sci. 2019; 42:5.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Fatih Mehmet Coşkun 0000-0001-8040-8054

Yayımlanma Tarihi 31 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Coşkun, F. M. (2020). A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 8(2), 247-256. https://doi.org/10.20290/estubtdb.633238
AMA Coşkun FM. A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION. Estuscience - Theory. Ağustos 2020;8(2):247-256. doi:10.20290/estubtdb.633238
Chicago Coşkun, Fatih Mehmet. “A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND P-Si JUNCTION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 8, sy. 2 (Ağustos 2020): 247-56. https://doi.org/10.20290/estubtdb.633238.
EndNote Coşkun FM (01 Ağustos 2020) A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8 2 247–256.
IEEE F. M. Coşkun, “A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION”, Estuscience - Theory, c. 8, sy. 2, ss. 247–256, 2020, doi: 10.20290/estubtdb.633238.
ISNAD Coşkun, Fatih Mehmet. “A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND P-Si JUNCTION”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8/2 (Ağustos 2020), 247-256. https://doi.org/10.20290/estubtdb.633238.
JAMA Coşkun FM. A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION. Estuscience - Theory. 2020;8:247–256.
MLA Coşkun, Fatih Mehmet. “A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND P-Si JUNCTION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 8, sy. 2, 2020, ss. 247-56, doi:10.20290/estubtdb.633238.
Vancouver Coşkun FM. A COMPREHENSIVE DETERMINING OF CAPACITANCE -VOLTAGE PARAMETERS OF ELECTRONIC DEVICES WITH METAL AND p-Si JUNCTION. Estuscience - Theory. 2020;8(2):247-56.