BibTex RIS Kaynak Göster

A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION

Yıl 2018, Cilt: 6 Sayı: 2, 140 - 153, 01.06.2018

Öz

In this report, a method of multiple scales is presented for the analysis of the (1+1)-dimensional seven order Korteweg-de Vries (KdV7) equation and we derive nonlinear Schrödinger (NLS) type equation. Also we found the exact solutions for (1+1)-dimensional KdV7 equation by using the (G/G)-expansion method. These methods are very simple and effective for getting integrability and exact solutions of KdV type equations

Kaynakça

  • [1] Zakharov V, Kuznetsov E.A. Multiscale expansions in the theory of systems integrable by the inverse scattering transform. Physica D 1986; 18: 455-63.
  • [2] Calegora F, Degasperis A, Xiaosdo Ji. Nonlinear Schrödinger-type equations from multiscale reduction of PDEs I. Systematic derivation. J Math Phys 2001; 42: 2635-2652.
  • [3] Degasperis A, Manakov SV, Santini PM. Multiple-scale perturbation beyond nonlinear Schrödinger equation I. Physica D 1997; 100: 187-211.
  • [4] Osborne AR, Boffetta G. The shallow water NLS equation in Lagrangian coordinates. Phys Fluid A 1989; 1:1200-1210.
  • [5] Osborne AR, Boffetta G. A. Summable multiscale expansion for the KdV equation. In: Degasperis A, Fordy AP, Lakshmanan M, editors. Nonlinear evolution equations. Integrability and spectral Methods. MUP, Manchester and New York, 1991 pp. 559-571.
  • [6] Ozer MN, Dag I. The famous NLS equation from fifth-order integrable nonlinear evolution equations. Hadronic J 2001; 2: 195-206.
  • [7] Jafari H, Kadkhoda N, Biswas A. The -expansion method for solutions of evolution equations from isothermal magnetostatic atmospheres, Journal of King Saud University-Science 2013; 25: 57- 62. [8] Zhang S, Dong L, Ba J, Sun Y. The -expansion method for nonlinear differential-difference equations. Physics Letters A 2009; 373: 905-910.
  • [9] Aslan I. Discrete exact solutions to some nonlinear differential-difference equations via the -expansion method. Applied Mathematics and Computation 2009; 8: 3140-3147.
  • [10] Zhang J, Wei X, Lu Y. A generalized -expansion method and its applications. Physics Letters A 2008; 372: 3653-3658.
  • [11] Wang ML, Li XZ, Zhang JL. The -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A 2008; 372: 417-423.
  • [12] Tang B, He Y, Wei L, Wang S. Variable-coefficient discrete -expansion method for nonlinear differential--difference equations. Physics Letters A 2011; 375: 3355-3361.
  • [13] Ayhan B, Bekir A. The -expansion method for the nonlinear lattice equations, Communications in Nonlinear Science and Numerical Simulation 2012; 17: 3490-3498.
  • [14] Geng X, Xue B. N-soliton and quasi-periodic solutions of the KdV6 equations, Applied Mathematics and Computation 2012; 219: 3504-3510.
  • [15] Zhang S, Tong JL, Wang W. A generalized -expansion method for the mKdV equation with variable coefficients, Physics Letters A 2008; 372: 2254-2257.
  • [16] Ayhan B, Özer MN, Bekir A. Method of Multiple Scales and Travelling Wave Solutions for (2+1)-Dimensional KdV Type Nonlinear Evolution Equations, Z. Naturforsch 2016; 71(8): 703-713.
  • [17] Hereman W, Banerjee PP, Korpel A, Assanto AG, Immerzeele V, Meerpoel A. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method, J. Phys. A: Math. Gen 1986; 19: 607-628
  • [18] Bilge AH. Integrability of seventh-order KdV-like evolution equations using formal symmetries and perturbations of conserved densities, J. Math. Phys 1992; 33: 3025–3038. [19] Gerdt VP. Computer algebra, symmetry analysis and integrability of nonlinear evolution equations, Int. J. Mod. Phys. C 1993; 4: 279–286. [20] Lax PD. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math 1968; 21: 467-490.
  • [21] Çakır F. Solutions of Nonlinear Equations Using Multiscale Expansion Method, Ph.D. thesis, Eskişehir Osmangazi University 2017; 79p.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Murat Koparan Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 2

Kaynak Göster

APA Koparan, M. (2018). A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 6(2), 140-153.
AMA Koparan M. A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION. Estuscience - Theory. Haziran 2018;6(2):140-153.
Chicago Koparan, Murat. “A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 6, sy. 2 (Haziran 2018): 140-53.
EndNote Koparan M (01 Haziran 2018) A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 6 2 140–153.
IEEE M. Koparan, “A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION”, Estuscience - Theory, c. 6, sy. 2, ss. 140–153, 2018.
ISNAD Koparan, Murat. “A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 6/2 (Haziran 2018), 140-153.
JAMA Koparan M. A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION. Estuscience - Theory. 2018;6:140–153.
MLA Koparan, Murat. “A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 6, sy. 2, 2018, ss. 140-53.
Vancouver Koparan M. A MULTIPLE SCALES METHOD FOR SOLVING NONLINEAR KdV7 EQUATION. Estuscience - Theory. 2018;6(2):140-53.