Araştırma Makalesi
BibTex RIS Kaynak Göster

HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS

Yıl 2019, Cilt: 7 Sayı: 2, 133 - 145, 23.08.2019
https://doi.org/10.20290/estubtdb.609525

Öz



First
part of the study is mainly about some missing concepts of the measure theory
of nabla time scale calculus. In the second part, as an application of the
nabla measure theory, especially the nabla Sobolev spaces, Hardy- Sobolev Mazya
Inequality on nabla time scale is obtained and given.

Kaynakça

  • Deniz A. Measure theory on time scales. MSc, Graduate School of Engineering and Sciences of Izmir Institute of Technology, Turkey, 2007. Cabada A and Vivero D. Expression of the Lebesgue Δ-Integral on Time Scales as a Usual Lebesgue Intregral; Application to the Calculus of Δ-Antiderivatives, Elsevier 4, 2004. pp.291-310. Guseinov SG. Integration on Time Scales, Elsevier Academic Press, No. 285, 2003. pp. 107-127. Hilger S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 1990. 18, 18-56. Roussas GG. An Introduction to Measure Theoretic Probability, Elsevier Academic Press, California, 2004. Bohner M and Peterson A. Dynamic Equations on Time Scales; An Introduction with Applications, Birkhauser, Boston, 2001. Rudin W. Real and Complex Analysis, McGraw-Hill, New York, 1987. Ferreira RAC, Ammi MRS, Torres DFM, Diamond-alpha Integral Inequalities on Time Scales Int. J. Math.Stat.5(A09), 2009, 52–59. Ozkan UM, Sarikaya MZ, Yildirim H. Extensions of certain integral inequalities on time scales, Appl. Math. Lett. 2008, 21 (10), 993-1000. Williams PA. Fractional Calculus on Time Scales with Taylor’s Theorem Fract. Calc. Appl. Anal. 2012, 15, 4. Guvenilir AF, Kaymakcalan B, Pelen NN. Constantin’s inequality for nabla and diamond-alpha derivative, J. Inequal. Appl. 2015, 2015:167.

HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS

Yıl 2019, Cilt: 7 Sayı: 2, 133 - 145, 23.08.2019
https://doi.org/10.20290/estubtdb.609525

Öz



First
part of the study is mainly about some missing concepts of the measure theory
of nabla time scale calculus. In the second part, as an application of the
nabla measure theory, especially the nabla Sobolev spaces, Hardy- Sobolev Mazya
Inequality on nabla time scale is obtained and given.

Kaynakça

  • Deniz A. Measure theory on time scales. MSc, Graduate School of Engineering and Sciences of Izmir Institute of Technology, Turkey, 2007. Cabada A and Vivero D. Expression of the Lebesgue Δ-Integral on Time Scales as a Usual Lebesgue Intregral; Application to the Calculus of Δ-Antiderivatives, Elsevier 4, 2004. pp.291-310. Guseinov SG. Integration on Time Scales, Elsevier Academic Press, No. 285, 2003. pp. 107-127. Hilger S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 1990. 18, 18-56. Roussas GG. An Introduction to Measure Theoretic Probability, Elsevier Academic Press, California, 2004. Bohner M and Peterson A. Dynamic Equations on Time Scales; An Introduction with Applications, Birkhauser, Boston, 2001. Rudin W. Real and Complex Analysis, McGraw-Hill, New York, 1987. Ferreira RAC, Ammi MRS, Torres DFM, Diamond-alpha Integral Inequalities on Time Scales Int. J. Math.Stat.5(A09), 2009, 52–59. Ozkan UM, Sarikaya MZ, Yildirim H. Extensions of certain integral inequalities on time scales, Appl. Math. Lett. 2008, 21 (10), 993-1000. Williams PA. Fractional Calculus on Time Scales with Taylor’s Theorem Fract. Calc. Appl. Anal. 2012, 15, 4. Guvenilir AF, Kaymakcalan B, Pelen NN. Constantin’s inequality for nabla and diamond-alpha derivative, J. Inequal. Appl. 2015, 2015:167.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Neslihan Nesliye Pelen 0000-0003-1853-3959

Yayımlanma Tarihi 23 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

APA Pelen, N. N. (2019). HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 7(2), 133-145. https://doi.org/10.20290/estubtdb.609525
AMA Pelen NN. HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS. Estuscience - Theory. Ağustos 2019;7(2):133-145. doi:10.20290/estubtdb.609525
Chicago Pelen, Neslihan Nesliye. “HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 7, sy. 2 (Ağustos 2019): 133-45. https://doi.org/10.20290/estubtdb.609525.
EndNote Pelen NN (01 Ağustos 2019) HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7 2 133–145.
IEEE N. N. Pelen, “HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS”, Estuscience - Theory, c. 7, sy. 2, ss. 133–145, 2019, doi: 10.20290/estubtdb.609525.
ISNAD Pelen, Neslihan Nesliye. “HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7/2 (Ağustos 2019), 133-145. https://doi.org/10.20290/estubtdb.609525.
JAMA Pelen NN. HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS. Estuscience - Theory. 2019;7:133–145.
MLA Pelen, Neslihan Nesliye. “HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 7, sy. 2, 2019, ss. 133-45, doi:10.20290/estubtdb.609525.
Vancouver Pelen NN. HARDY-SOBOLEV-MAZYA INEQUALITY FOR NABLA TIME SCALE CALCULUS. Estuscience - Theory. 2019;7(2):133-45.

Cited By


The complementary nabla Bennett-Leindler type inequalities
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.930138