Araştırma Makalesi
BibTex RIS Kaynak Göster

BAZI LİE CEBİRLERİ ÜZERİNDE HEMEN-HEMEN KONTAKT YAPILAR

Yıl 2022, Cilt: 10 Sayı: 2, 75 - 81, 23.08.2022
https://doi.org/10.20290/estubtdb.1006054

Öz

Bu çalışmada bazı 7 boyutlu reel Lie cebirleri üzerinde yapının vektör alanı paralel olacak şekilde hemen hemen kontakt metrik yapıların olmadığı gösterilmiştir.

Destekleyen Kurum

Eskişehir Teknik Üniversitesi

Proje Numarası

19ADP178

Kaynakça

  • [1] Calvaruso G. Three-dimensional homogeneous almost contact metric structures. J Geom Phys, 2013; 6, 60-73.
  • [2] Andrada A, Fino A, Vezzoni, L. A class of Sasakian 5-manifolds. Transform Groups, 2009; 3-14: 493-512.
  • [3] Calvaruso G, Fino A. Five-dimensional K-contact Lie algebras. Monatsh Math, 2012; 167, 35-59.
  • [4] Özdemir N, Solgun M, Aktay Ş. Almost contact metric structures on 5-dimensional nilpotent Lie algebras. Symmetry-Basel, 2016; 8, 76; doi:10.3390/sym8080076.
  • [5] Özdemir N, Aktay Ş, Solgun M. Quasi-Sasakian structures on 5-dimensional nilpotent Lie algebras. Commun Fac Sci Univ Ank Ser A1 Math Stat, 2019; 68(1) 326-333.
  • [6] Gong MP. Classification of nilpotent Lie algebras of dimension 7. PhD, University of Waterloo, Waterloo, Ontario, Canada, 1998.
  • [7] Alvarez MA, Rodriguez-Vallarte M. C, Salgado G. Contact nilpotent Lie algebras. Proc Amer Math Soc, 2017; 145, 1467-1474.
  • [8] Smolentsev NK. Invariant pseudo-Sasakian and K-contact structures on seven dimensional nilpotent Lie groups. arXiv: 1701.04142v1 [math DG]
  • [9] Kutsak S. Invariant contact structures on 7-dimensional nilmanifolds. Geom Dedicata, 2014; 172, 351-361.
  • [10] Chinea D, Gonzales C. A classification of almost contact metric manifolds. Ann Mat Pura Appl, 1990; 4-156: 15-36.
  • [11] Alexiev V, Ganchev G. On the classification of the almost contact metric manifolds, Math and Educ in Math, Proc of the XV Spring Conf of UBM, Sunny Beach, Bulgaria, 155, 1986.
  • [12] Blair DE. Riemannian Geometry of Contact and Symplectic Manifolds. 2nd ed. Birkha ̈user, Switzerland, 2002.
  • [13] Dixmier J. Sur les representations unitaires des groupes de Lie nilpotentes III. Canad J Math, 1958; 10, 321-348.

ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS

Yıl 2022, Cilt: 10 Sayı: 2, 75 - 81, 23.08.2022
https://doi.org/10.20290/estubtdb.1006054

Öz

In this manuscript, we show that there are no almost contact structures with parallel characteristic vector field on certain 7 dimensional Lie algebras over the real field.

Proje Numarası

19ADP178

Kaynakça

  • [1] Calvaruso G. Three-dimensional homogeneous almost contact metric structures. J Geom Phys, 2013; 6, 60-73.
  • [2] Andrada A, Fino A, Vezzoni, L. A class of Sasakian 5-manifolds. Transform Groups, 2009; 3-14: 493-512.
  • [3] Calvaruso G, Fino A. Five-dimensional K-contact Lie algebras. Monatsh Math, 2012; 167, 35-59.
  • [4] Özdemir N, Solgun M, Aktay Ş. Almost contact metric structures on 5-dimensional nilpotent Lie algebras. Symmetry-Basel, 2016; 8, 76; doi:10.3390/sym8080076.
  • [5] Özdemir N, Aktay Ş, Solgun M. Quasi-Sasakian structures on 5-dimensional nilpotent Lie algebras. Commun Fac Sci Univ Ank Ser A1 Math Stat, 2019; 68(1) 326-333.
  • [6] Gong MP. Classification of nilpotent Lie algebras of dimension 7. PhD, University of Waterloo, Waterloo, Ontario, Canada, 1998.
  • [7] Alvarez MA, Rodriguez-Vallarte M. C, Salgado G. Contact nilpotent Lie algebras. Proc Amer Math Soc, 2017; 145, 1467-1474.
  • [8] Smolentsev NK. Invariant pseudo-Sasakian and K-contact structures on seven dimensional nilpotent Lie groups. arXiv: 1701.04142v1 [math DG]
  • [9] Kutsak S. Invariant contact structures on 7-dimensional nilmanifolds. Geom Dedicata, 2014; 172, 351-361.
  • [10] Chinea D, Gonzales C. A classification of almost contact metric manifolds. Ann Mat Pura Appl, 1990; 4-156: 15-36.
  • [11] Alexiev V, Ganchev G. On the classification of the almost contact metric manifolds, Math and Educ in Math, Proc of the XV Spring Conf of UBM, Sunny Beach, Bulgaria, 155, 1986.
  • [12] Blair DE. Riemannian Geometry of Contact and Symplectic Manifolds. 2nd ed. Birkha ̈user, Switzerland, 2002.
  • [13] Dixmier J. Sur les representations unitaires des groupes de Lie nilpotentes III. Canad J Math, 1958; 10, 321-348.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Şirin Aktay 0000-0003-2792-3481

Proje Numarası 19ADP178
Yayımlanma Tarihi 23 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 2

Kaynak Göster

APA Aktay, Ş. (2022). ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 10(2), 75-81. https://doi.org/10.20290/estubtdb.1006054
AMA Aktay Ş. ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS. Estuscience - Theory. Ağustos 2022;10(2):75-81. doi:10.20290/estubtdb.1006054
Chicago Aktay, Şirin. “ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 10, sy. 2 (Ağustos 2022): 75-81. https://doi.org/10.20290/estubtdb.1006054.
EndNote Aktay Ş (01 Ağustos 2022) ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 10 2 75–81.
IEEE Ş. Aktay, “ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS”, Estuscience - Theory, c. 10, sy. 2, ss. 75–81, 2022, doi: 10.20290/estubtdb.1006054.
ISNAD Aktay, Şirin. “ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 10/2 (Ağustos 2022), 75-81. https://doi.org/10.20290/estubtdb.1006054.
JAMA Aktay Ş. ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS. Estuscience - Theory. 2022;10:75–81.
MLA Aktay, Şirin. “ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 10, sy. 2, 2022, ss. 75-81, doi:10.20290/estubtdb.1006054.
Vancouver Aktay Ş. ALMOST CONTACT STRUCTURES ON SOME LIE ALGEBRAS. Estuscience - Theory. 2022;10(2):75-81.