Araştırma Makalesi
BibTex RIS Kaynak Göster

LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES

Yıl 2025, Cilt: 13 Sayı: 2, 92 - 103, 25.08.2025
https://doi.org/10.20290/estubtdb.1606064

Öz

In a previous study, limits were calculated within the category of 2-crossed modules of groups over a fixed group R, where the group actions involved were specifically taken to be conjugation actions. While this framework provides a rich algebraic structure for constructing certain homotopical and categorical structures, the limitation of conjugation-based actions restricts the flexibility of this approach. In this paper, we extend this framework by introducing the notion of 2-generalized crossed modules (2GCM), which generalize the structure of 2-crossed modules by allowing more flexible and arbitrary group actions, rather than restricting them to conjugation actions. Furthermore, we prove that the category of 2-generalized crossed modules is finitely complete, meaning that it possesses all finite limits, such as products and equalizers. This property is important for higher-level categorical analysis and supports the application of 2-generalized crossed modules in both theoretical and applied contexts, particularly in higher-dimensional algebra and homotopy theory.

Kaynakça

  • [1] Yavari M, Salemkar A. The category of generalized crossed modules. Categ Gen Algebr Struct Appl 2019; 10: 157-171.
  • [2] Conduché D. Modules croisés généralisés de longueur 2. J Pure Appl Algebra 1984; 34: 155-178.
  • [3] Arvasi Z. Crossed squares and 2-crossed modules of commutative algebras. Theory and Applications of Categories 1997; 3: 160-181.
  • [4] Akça İİ, Emir K, Martins J. Pointed homotopy of maps between 2-crossed modules of commutative algebras. Homology, Homotopy and Applications 2016; 18: 99-128.
  • [5] Akça İİ, Emir K, Martins J. Two-fold homotopy of 2-crossed module maps of commutative algebras. Communications in Algebra 2019; 47: 289-311.
  • [6] Ozel E, Ege Arslan U, Akça İİ. A higher-dimensional categorical perspective on 2-crossed modules. Demonstratio Mathematica 2024; 57.
  • [7] Brown R, Sivera R. Algebraic colimit calculations in homotopy theory using fibred and cofibred categories. Theory and Applications of Categories 2009; 22: 222-251.
  • [8] Brown R, Higgins PJ. Colimit theorems for relative homotopy groups. J Pure Appl Algebra 1981; 22: 11-41.
  • [9] Brown R, Higgins PJ. On the connection between the second relative homotopy groups of some related spaces. Proceedings of the London Mathematical Society 1978; 36: 193-212.
  • [10] Brown R. Loday JL. Van Kampen theorems for diagrams of spaces. Topology 1987; 26: 311-335.
  • [11] Casas JM, Ladra M. Colimits in the crossed modules category in lie algebras. Georgian Mathematical Journal 2000; 7: 461-474.
  • [12] Emir K, Çetin S. Limits in modified categories of interest. Bulletin of the Iranian Mathematical Society 2017; 43: 2617-2634.
  • [13] Aytekin A, Emir K. Colimits of crossed modules in modified categories of interest. Electronic Research Archive 2020; 28: 1227-1238.
  • [14] Aytekin A. (Co)Limits of Hom-Lie crossed module. Turkish Journal of Mathematics 2021; 45: 2140-2153.
  • [15] Koçak M, Çetin S. Higher Dimensional Leibniz-Rinehart algebras. Journal of Mathematical Sciences and Modelling 2024; 7: 45-50.
  • [16] Yılmaz ES. (Co) Limit calculations in the category of 2-crossed R-modules. Turkish Journal of Mathematics 2022; 46; 2902-2915.
  • [17] Ege Arslan U, Akça İİ, Onarlı G, Avcıoğlu O. Fibrations of 2-crossed modules. Math Meth Appl Sci 2019; 42: 5293–5304.

LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES

Yıl 2025, Cilt: 13 Sayı: 2, 92 - 103, 25.08.2025
https://doi.org/10.20290/estubtdb.1606064

Öz

In a previous study, limits were calculated within the category of 2-crossed modules of groups over a fixed group R, where the group actions involved were specifically taken to be conjugation actions. While this framework provides a rich algebraic structure for constructing certain homotopical and categorical structures, the limitation of conjugation-based actions restricts the flexibility of this approach. In this paper, we extend this framework by introducing the notion of 2-generalized crossed modules (2GCM), which generalize the structure of 2-crossed modules by allowing more flexible and arbitrary group actions, rather than restricting them to conjugation actions. Furthermore, we prove that the category of 2-generalized crossed modules is finitely complete, meaning that it possesses all finite limits, such as products and equalizers. This property is important for higher-level categorical analysis and supports the application of 2-generalized crossed modules in both theoretical and applied contexts, particularly in higher-dimensional algebra and homotopy theory.

Kaynakça

  • [1] Yavari M, Salemkar A. The category of generalized crossed modules. Categ Gen Algebr Struct Appl 2019; 10: 157-171.
  • [2] Conduché D. Modules croisés généralisés de longueur 2. J Pure Appl Algebra 1984; 34: 155-178.
  • [3] Arvasi Z. Crossed squares and 2-crossed modules of commutative algebras. Theory and Applications of Categories 1997; 3: 160-181.
  • [4] Akça İİ, Emir K, Martins J. Pointed homotopy of maps between 2-crossed modules of commutative algebras. Homology, Homotopy and Applications 2016; 18: 99-128.
  • [5] Akça İİ, Emir K, Martins J. Two-fold homotopy of 2-crossed module maps of commutative algebras. Communications in Algebra 2019; 47: 289-311.
  • [6] Ozel E, Ege Arslan U, Akça İİ. A higher-dimensional categorical perspective on 2-crossed modules. Demonstratio Mathematica 2024; 57.
  • [7] Brown R, Sivera R. Algebraic colimit calculations in homotopy theory using fibred and cofibred categories. Theory and Applications of Categories 2009; 22: 222-251.
  • [8] Brown R, Higgins PJ. Colimit theorems for relative homotopy groups. J Pure Appl Algebra 1981; 22: 11-41.
  • [9] Brown R, Higgins PJ. On the connection between the second relative homotopy groups of some related spaces. Proceedings of the London Mathematical Society 1978; 36: 193-212.
  • [10] Brown R. Loday JL. Van Kampen theorems for diagrams of spaces. Topology 1987; 26: 311-335.
  • [11] Casas JM, Ladra M. Colimits in the crossed modules category in lie algebras. Georgian Mathematical Journal 2000; 7: 461-474.
  • [12] Emir K, Çetin S. Limits in modified categories of interest. Bulletin of the Iranian Mathematical Society 2017; 43: 2617-2634.
  • [13] Aytekin A, Emir K. Colimits of crossed modules in modified categories of interest. Electronic Research Archive 2020; 28: 1227-1238.
  • [14] Aytekin A. (Co)Limits of Hom-Lie crossed module. Turkish Journal of Mathematics 2021; 45: 2140-2153.
  • [15] Koçak M, Çetin S. Higher Dimensional Leibniz-Rinehart algebras. Journal of Mathematical Sciences and Modelling 2024; 7: 45-50.
  • [16] Yılmaz ES. (Co) Limit calculations in the category of 2-crossed R-modules. Turkish Journal of Mathematics 2022; 46; 2902-2915.
  • [17] Ege Arslan U, Akça İİ, Onarlı G, Avcıoğlu O. Fibrations of 2-crossed modules. Math Meth Appl Sci 2019; 42: 5293–5304.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kategori Teorisi, K Teorisi, Homolojik Cebir
Bölüm Makaleler
Yazarlar

Hatice Gülsün Akay 0000-0001-7983-6852

Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 23 Aralık 2024
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Gülsün Akay, H. (2025). LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 13(2), 92-103. https://doi.org/10.20290/estubtdb.1606064
AMA Gülsün Akay H. LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES. Estuscience - Theory. Ağustos 2025;13(2):92-103. doi:10.20290/estubtdb.1606064
Chicago Gülsün Akay, Hatice. “LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13, sy. 2 (Ağustos 2025): 92-103. https://doi.org/10.20290/estubtdb.1606064.
EndNote Gülsün Akay H (01 Ağustos 2025) LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13 2 92–103.
IEEE H. Gülsün Akay, “LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES”, Estuscience - Theory, c. 13, sy. 2, ss. 92–103, 2025, doi: 10.20290/estubtdb.1606064.
ISNAD Gülsün Akay, Hatice. “LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13/2 (Ağustos2025), 92-103. https://doi.org/10.20290/estubtdb.1606064.
JAMA Gülsün Akay H. LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES. Estuscience - Theory. 2025;13:92–103.
MLA Gülsün Akay, Hatice. “LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, c. 13, sy. 2, 2025, ss. 92-103, doi:10.20290/estubtdb.1606064.
Vancouver Gülsün Akay H. LIMITS IN THE CATEGORY OF 2-GENERALIZED CROSSED MODULES. Estuscience - Theory. 2025;13(2):92-103.