Araştırma Makalesi
BibTex RIS Kaynak Göster

SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE

Yıl 2025, Cilt: 13 Sayı: 2, 109 - 121, 25.08.2025
https://doi.org/10.20290/estubtdb.1673455

Öz

This paper examines a tubular surface, a specific example of a canal surface, in 4-dimensional Euclidean space. In the plane stretched by the quasi-frame vectors B_q and C_q, this surface is established by the motion of a circle with a constant radius that uses each point on the curve a(t) as its center. Using the general equation provided in Euclidean 4-space, the first and second partial derivatives are determined. The Gram-Schmidt technique was used to derive the surface's first unit normal vector field U_1, and second unit normal vector field U_2, using the acquired partial derivatives. Using quasi-vectors, the tubular surface's first and second fundamental form coefficients were found. Furthermore, the shape operator matrices for the tubular surface's the unit normal vector fields U_1 and U_2 were acquired. We have found algebraic invariants of the shape operator, Gaussian curvature, and mean curvature. For a thorough understanding of the obtained theoretical calculations, an example of a directional tubular surface, the equation of the tubular surface has been parametrized using quasi-frame vectors and quasi-frame curvatures for a given space curve in 4-dimensional Euclidean space.

Kaynakça

  • [1] Monge G. Application de l’analyse a la géométrie. Bachelier. 1850.
  • [2] Xu Z, Feng R, Sun JG. Analytic and algebraic properties of canal surfaces. Journal of Computational and Applied Mathematics, 2006; 195(1-2): 220-228.
  • [3] Maekawa T, Patrikalakis NM, Sakkalis T, Yu G. Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 1998; 15(5), 437-458.
  • [4] Bloomenthal J. Calculation of reference frames along a space curve. Graphics Gems, 1990; 1: 567-571.
  • [5] Doğan F, Yaylı Y. Tubes with Darboux frame. International Journal of Contemporary Mathematical Sciences, 2012; 7(16): 751-758.
  • [6] Bishop RL. There is more than one way to frame a curve. The American Mathematical Monthly, 1975; 82(3): 246-251.
  • [7] Coquillart S. Computing offsets of B-spline curves, Computer-Aided Design, 1987; 19(6): 305-309.
  • [8] Dede M, Ekici C, Görgülü A. Directional q-frame along a space curve. International Journal of Advanced Research in Computer Science and Software Engineering, 2015; 5(12): 775-780.
  • [9] Dede M. Tubular surfaces in Galilean space. Mathematical Communications, 2013; 18(1): 209-217.
  • [10] Dede M, Ekici C, Tozak H. Directional tubular surfaces. International Journal of Algebra, 2015; 9(12): 527-535.
  • [11] Ekici C, Tozak H, Dede M. Timelike directional tubular surface. Journal of Mathematical Analysis, 2017; 8(5): 1-11.
  • [12] Gezer B, Ekici C. On space curve with quasi frame in E4. 4th International Black Sea Modern Scientific Research Congress; 6-7 June 2023; Rize, Turkey, 1951-1962.
  • [13] Gluck H. Higher curvatures of curves in Euclidean space. The American Mathematical Monthly, 1966; 73(7): 699-704.
  • [14] Alessio O. Differential geometry of intersection curves in R4 of three implicit surfaces. Computer Aided Geometric Design, 2009; 26(4): 455-471.
  • [15] Elsayied HK, Tawfiq AM, Elsharkawy A. Special Smarandach curves according to the quasi frame in 4-dimensional Euclidean space E4. Houston Journal of Mathematics, 2021; 74(2): 467-482.
  • [16] Gökçelik F, Bozkurt Z, Gök İ, Ekmekçi N, Yaylı Y. Parallel transport frame in 4-dimensional Euclidean space. The Caspian Journal of Mathematical Sciences, 2014; 3(1): 91-103.
  • [17] Öztürk G, Gürpınar S, Arslan K. A new characterization of curves in Euclidean 4-space E4. Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2017; 1(83), 39-50.
  • [18] Bayram KB, Bulca B, Arslan K, Öztürk G. Superconformal ruled surfaces in E4. Mathematical Communications, 2009; 14(2), 235-244.
  • [19] Ekici A, Akça Z, Ekici C. The ruled surfaces generated by quasi-vectors in E4 space. 7. International Biltek Congress on Current Developments in Science, Technology and Social Sciences, 2023; 400-418.
  • [20] Ol´ah-G´al R, P´al L. Some notes on drawing twofolds in 4-Dimensional Euclidean space. Acta Universitatis Sapientiae, Informatica, 2009; 1(2), 125-134.
  • [21] Chen BY. Total mean curvature of immerseds Surface in Em. Transactions of the American Mathematical Society, 1976; 218: 333-341.
  • [22] Kişi İ. Some characterizatıons of canal surfaces in the four dimensional Euclidean space. Kocaeli University, Kocaeli, Türkiye, 2018.
  • [23] Bulca B, Arslan K, Bayram B, Öztürk G. Canal surfaces in 4-dimensional Euclidean space. An International Journal of Optimization and Control: Theories & Applications, 2017; 7(1): 83-89.
  • [24] Kaymanlı GU, Ekici C, Dede M. Directional canal surfaces in E3. 5th International Symposium on Multidisciplinary Studies, 2018; 90-107.
  • [25] Kim YH, Liu H, Qian J. Some characterizations of canal surfaces. Bulletin of the Korean Mathematical Society, 2016; 53(2): 461-477.
  • [26] Uçum A, İlarslan K. New types of canal surfaces in Minkowski 3-space. Advances in Applied Clifford Algebras, 2016; 26: 449-468.
  • [27] Doğan F, Yaylı Y. The relation between parameter curves and lines of curvature on canal surfaces. Kuwait Journal of Science, 2017; 44(1): 29-35.
  • [28] Coşkun Ekici A, Akça Z. The ruled surfaces generated by quasi-vectors in E4 space. Hagia Sophia Journal of Geometry, 2023; 5(2): 6-17.
  • [29] Mello LF. Mean directionally curved lines on surfaces immersed in R4. Publicacions Matemàtiques, 2003; 47(2): 415-440.
  • [30] Yağbasan B, Ekici C. Tube surfaces in 4 dimensional Euclidean space. 4th International Black Sea Modern Scientific Research Congress; 6-7 June 2023; Rize, Türkiye, 1951-1962.
  • [31] Yağbasan B, Tozak H, Ekici C. The curvatures of the tube surface in 4 dimensional Euclidean space. VII.International Biltek Congress On Current Developments In Science, Technology And Social Sciences; 26-27 May 2023; Ankara, Türkiye 419-436.
  • [32] Yağbasan B, Ekici C, Tozak H. Directional tube surface in Euclidean 4-space. Hagia Sophia Journal of Geometry, 2023; 5(2): 18-30.
  • [33] Gray A. Modern differential geometry of curves and surface. CRS Press, Inc. 1993.
  • [34] Bulca B. A characterization of a surface in E4. Uludağ University, Bursa, Türkiye, 2012.

SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE

Yıl 2025, Cilt: 13 Sayı: 2, 109 - 121, 25.08.2025
https://doi.org/10.20290/estubtdb.1673455

Öz

This paper examines a tubular surface, a specific example of a canal surface, in 4-dimensional Euclidean space. In the plane stretched by the quasi-frame vectors B_q and C_q, this surface is established by the motion of a circle with a constant radius that uses each point on the curve a(t) as its center. Using the general equation provided in Euclidean 4-space, the first and second partial derivatives are determined. The Gram-Schmidt technique was used to derive the surface's first unit normal vector field U_1, and second unit normal vector field U_2, using the acquired partial derivatives. Using quasi-vectors, the tubular surface's first and second fundamental form coefficients were found. Furthermore, the shape operator matrices for the tubular surface's the unit normal vector fields U_1 and U_2 were acquired. We have found algebraic invariants of the shape operator, Gaussian curvature, and mean curvature. For a thorough understanding of the obtained theoretical calculations, an example of a directional tubular surface, the equation of the tubular surface has been parametrized using quasi-frame vectors and quasi-frame curvatures for a given space curve in 4-dimensional Euclidean space.

Kaynakça

  • [1] Monge G. Application de l’analyse a la géométrie. Bachelier. 1850.
  • [2] Xu Z, Feng R, Sun JG. Analytic and algebraic properties of canal surfaces. Journal of Computational and Applied Mathematics, 2006; 195(1-2): 220-228.
  • [3] Maekawa T, Patrikalakis NM, Sakkalis T, Yu G. Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 1998; 15(5), 437-458.
  • [4] Bloomenthal J. Calculation of reference frames along a space curve. Graphics Gems, 1990; 1: 567-571.
  • [5] Doğan F, Yaylı Y. Tubes with Darboux frame. International Journal of Contemporary Mathematical Sciences, 2012; 7(16): 751-758.
  • [6] Bishop RL. There is more than one way to frame a curve. The American Mathematical Monthly, 1975; 82(3): 246-251.
  • [7] Coquillart S. Computing offsets of B-spline curves, Computer-Aided Design, 1987; 19(6): 305-309.
  • [8] Dede M, Ekici C, Görgülü A. Directional q-frame along a space curve. International Journal of Advanced Research in Computer Science and Software Engineering, 2015; 5(12): 775-780.
  • [9] Dede M. Tubular surfaces in Galilean space. Mathematical Communications, 2013; 18(1): 209-217.
  • [10] Dede M, Ekici C, Tozak H. Directional tubular surfaces. International Journal of Algebra, 2015; 9(12): 527-535.
  • [11] Ekici C, Tozak H, Dede M. Timelike directional tubular surface. Journal of Mathematical Analysis, 2017; 8(5): 1-11.
  • [12] Gezer B, Ekici C. On space curve with quasi frame in E4. 4th International Black Sea Modern Scientific Research Congress; 6-7 June 2023; Rize, Turkey, 1951-1962.
  • [13] Gluck H. Higher curvatures of curves in Euclidean space. The American Mathematical Monthly, 1966; 73(7): 699-704.
  • [14] Alessio O. Differential geometry of intersection curves in R4 of three implicit surfaces. Computer Aided Geometric Design, 2009; 26(4): 455-471.
  • [15] Elsayied HK, Tawfiq AM, Elsharkawy A. Special Smarandach curves according to the quasi frame in 4-dimensional Euclidean space E4. Houston Journal of Mathematics, 2021; 74(2): 467-482.
  • [16] Gökçelik F, Bozkurt Z, Gök İ, Ekmekçi N, Yaylı Y. Parallel transport frame in 4-dimensional Euclidean space. The Caspian Journal of Mathematical Sciences, 2014; 3(1): 91-103.
  • [17] Öztürk G, Gürpınar S, Arslan K. A new characterization of curves in Euclidean 4-space E4. Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2017; 1(83), 39-50.
  • [18] Bayram KB, Bulca B, Arslan K, Öztürk G. Superconformal ruled surfaces in E4. Mathematical Communications, 2009; 14(2), 235-244.
  • [19] Ekici A, Akça Z, Ekici C. The ruled surfaces generated by quasi-vectors in E4 space. 7. International Biltek Congress on Current Developments in Science, Technology and Social Sciences, 2023; 400-418.
  • [20] Ol´ah-G´al R, P´al L. Some notes on drawing twofolds in 4-Dimensional Euclidean space. Acta Universitatis Sapientiae, Informatica, 2009; 1(2), 125-134.
  • [21] Chen BY. Total mean curvature of immerseds Surface in Em. Transactions of the American Mathematical Society, 1976; 218: 333-341.
  • [22] Kişi İ. Some characterizatıons of canal surfaces in the four dimensional Euclidean space. Kocaeli University, Kocaeli, Türkiye, 2018.
  • [23] Bulca B, Arslan K, Bayram B, Öztürk G. Canal surfaces in 4-dimensional Euclidean space. An International Journal of Optimization and Control: Theories & Applications, 2017; 7(1): 83-89.
  • [24] Kaymanlı GU, Ekici C, Dede M. Directional canal surfaces in E3. 5th International Symposium on Multidisciplinary Studies, 2018; 90-107.
  • [25] Kim YH, Liu H, Qian J. Some characterizations of canal surfaces. Bulletin of the Korean Mathematical Society, 2016; 53(2): 461-477.
  • [26] Uçum A, İlarslan K. New types of canal surfaces in Minkowski 3-space. Advances in Applied Clifford Algebras, 2016; 26: 449-468.
  • [27] Doğan F, Yaylı Y. The relation between parameter curves and lines of curvature on canal surfaces. Kuwait Journal of Science, 2017; 44(1): 29-35.
  • [28] Coşkun Ekici A, Akça Z. The ruled surfaces generated by quasi-vectors in E4 space. Hagia Sophia Journal of Geometry, 2023; 5(2): 6-17.
  • [29] Mello LF. Mean directionally curved lines on surfaces immersed in R4. Publicacions Matemàtiques, 2003; 47(2): 415-440.
  • [30] Yağbasan B, Ekici C. Tube surfaces in 4 dimensional Euclidean space. 4th International Black Sea Modern Scientific Research Congress; 6-7 June 2023; Rize, Türkiye, 1951-1962.
  • [31] Yağbasan B, Tozak H, Ekici C. The curvatures of the tube surface in 4 dimensional Euclidean space. VII.International Biltek Congress On Current Developments In Science, Technology And Social Sciences; 26-27 May 2023; Ankara, Türkiye 419-436.
  • [32] Yağbasan B, Ekici C, Tozak H. Directional tube surface in Euclidean 4-space. Hagia Sophia Journal of Geometry, 2023; 5(2): 18-30.
  • [33] Gray A. Modern differential geometry of curves and surface. CRS Press, Inc. 1993.
  • [34] Bulca B. A characterization of a surface in E4. Uludağ University, Bursa, Türkiye, 2012.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Makaleler
Yazarlar

Başak Yağbasan 0000-0003-4067-3034

Cumali Ekici 0000-0002-3247-5727

Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 10 Nisan 2025
Kabul Tarihi 13 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Yağbasan, B., & Ekici, C. (2025). SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 13(2), 109-121. https://doi.org/10.20290/estubtdb.1673455
AMA Yağbasan B, Ekici C. SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE. Estuscience - Theory. Ağustos 2025;13(2):109-121. doi:10.20290/estubtdb.1673455
Chicago Yağbasan, Başak, ve Cumali Ekici. “SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13, sy. 2 (Ağustos 2025): 109-21. https://doi.org/10.20290/estubtdb.1673455.
EndNote Yağbasan B, Ekici C (01 Ağustos 2025) SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13 2 109–121.
IEEE B. Yağbasan ve C. Ekici, “SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE”, Estuscience - Theory, c. 13, sy. 2, ss. 109–121, 2025, doi: 10.20290/estubtdb.1673455.
ISNAD Yağbasan, Başak - Ekici, Cumali. “SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 13/2 (Ağustos2025), 109-121. https://doi.org/10.20290/estubtdb.1673455.
JAMA Yağbasan B, Ekici C. SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE. Estuscience - Theory. 2025;13:109–121.
MLA Yağbasan, Başak ve Cumali Ekici. “SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, c. 13, sy. 2, 2025, ss. 109-21, doi:10.20290/estubtdb.1673455.
Vancouver Yağbasan B, Ekici C. SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE. Estuscience - Theory. 2025;13(2):109-21.