Research Article
BibTex RIS Cite

HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE

Year 2023, , 30 - 41, 30.01.2023
https://doi.org/10.18036/estubtdc.1199123

Abstract

There is a dearth of data about public health in the regular evaluation of heavy metal levels in seafood obtained from public market. This study aimed to examine the levels of essential (copper, zinc) and nonessential metals (cadmium, lead) in the tissues of cultured seabream (Sparus aurata), which was in public market. For this purpose, seabream samples were collected from the public market. And then, copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) metal accumulation levels in tissues of the dissected gill, liver, kidney, and muscle were obtained by inductively coupled plasma mass spectrometry (ICP-MS). In order to understand whether the fish posed a risk to public health, risk evaluation formulations (estimated daily intake: EDI, hazard coefficients: HQ, hazard index: HI) were calculated for the muscle tissue. The data showed that Zn, Cd and Pb concentrations were maximal in the kidney tissue of S. aurata and Cu concentration were in the liver tissue, while the minimum heavy metal levels were in the muscle tissue. As a result, the maximum levels of heavy metals in the edible tissue of seabream were found as 0.11 mg Cu/kg wet weight, 0.72 mg Zn/kg wet weight, 0.12 mg Cd/kg wet weight, and 0.34 mg Pb/kg wet weight. Maximum values of them do not indicate any health risks as they are lower than the allowable tolerable levels specified by the international EDI estimation committees. The examined HQ and HI indicators were observed below 1 in all seasons. However, it is always possible for heavy metal intake to pose potential risks. For this reason, it is essential that the results of the study be interpreted from different perspectives and taken into consideration by other scientists.

References

  • [1] Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23(2): 20-30. DOI:10.1161/01.ATV.0000038493.65177.94.
  • [2] Wang YY, Zhang JX, Tian T, Gao MY, Zhu QR, Xie W, Fu LM, Wang SK, Dai Y. Dietary patterns in association with the risk of elevated blood pressure, lipid profile and fasting plasma glucose among adults in Jiangsu Province of China. Nutr Metab Cardiovasc Dis 2022; 32(1): 69-79. DOI:10.1016/j.numecd.2021.09.004.
  • [3] Antonijevic B, Jankovic S, Curcic M, Durgo K, Stokic E, Srdic B, Tomic-Naglic D. Risk characterization for mercury, dichlorodiphenyltrichloroethane and polychlorinated biphenyls associated with fish consumption in Serbia. Food Chem Toxicol 2011; 49(10): 2586-2593. DOI:10.1016/j.fct.2011.06.078.
  • [4] Khalili Tilami S, Sampels S. Nutritional value of fish: lipids, proteins, vitamins, and minerals. Rev Fish Sci Aquacult 2018; 26(2): 243-253. DOI:10.1080/23308249.2017.1399104.
  • [5] Storelli MM. Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 2008; 46(8): 2782-2788. DOI:10.1016/j.fct.2008.05.011.
  • [6] Taş EÇ, Filipuçi I, Çakır DT, Beyaztaş S, Sunlu U, Toğulga M, Özaydın O, Arslan O. Heavy metal concentrations in tissues of edible fish (Mullus barbatus L.,1758) from Çandarlı Bay (Turkey). Fresenius Environmental Bulletin 2011; Volume 20 – No 11 : 2834-2839.
  • [7] Türkmen M, Türkmen A, Tepe Y, Töre Y, Ateş A. Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem 2009; 113(1): 233-237. DOI:10.1016/j.foodchem.2008.06.071
  • [8] Amundsen PA, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov YS. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 1997; 201(3): 211-224. DOI:10.1016/S0048-9697(97)84058-2.
  • [9] Couture P, Rajotte JW . Morphometric and metabolic indicators of metal stress in wild yellow perch (Perca flavescens) from Sudbury, Ontario: a review. J Environ Monit 2003; 5(2): 216-221. DOI:10.1039/B210338A.
  • [10] DPHHS U. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Zinc. Atlanta, GA: US Department of Public Health and Human Services, 2005.
  • [11] Isangedighi IA, David GS. Heavy metals contamination in fish: effects on human health. J Aquat Sci Mar Biol 2019; 2(4): 7-12.
  • [12] Chapman D. Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. Boca Raton, Florida, USA: CRC Press, 2021.
  • [13] Bakiu R, Santovito G, Hoda A, Shehu J, Durmishaj S, Irato P, Piccinni E. Metallothionein (MT): a good biomarker in marine sentinel species like sea bream (Sparus aurata). Albanian J Agric Sci 2013; 12(2): 247.
  • [14] Benhamed S, Guardiola FA, Martínez S, Martínez-Sánchez MJ, Pérez-Sirvent C, Mars M, Esteban MA. Exposure of the gilthead seabream (Sparus aurata) to sediments contaminated with heavy metals down-regulates the gene expression of stress biomarkers. Toxicol Rep 2016; 3: 364-372. DOI:10.1016/j.toxrep.2016.02.006
  • [15] Turkish Statistical Institute. Fisheries Statistics. 2019. https://www.tuik.gov.tr/Home/Index. Accessed July 22, 2022.
  • [16] Khansari FE, Ghazi-Khansari M, Abdollahi M. Heavy metals content of canned tuna fish. Food Chem 2005; 93(2): 293-296. DOI:10.1016/j.foodchem.2004.09.025
  • [17] Tuzen M. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem Toxicol 2009; 47(8): 1785-1790. DOI:10.1016/j.fct.2009.04.029.
  • [18] Muramoto S. Elimination of copper from Cu‐contaminated fish by long‐term exposure to EDTA and fresh water. J Environ Sci Health Part A 1983; 18(3): 455-461. DOI:10.1080/10934528309375113.
  • [19] Griboff J, Wunderlin DA, Monferran MV. Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem J 2017; 130: 236-244. DOI:10.1016/j.microc.2016.09.013.
  • [20] GDFA (General Directorate of Fisheries and Aquaculture). Fisheries Statistics. Republic of Turkey Ministry of Food Agriculture and Livestock, 2018. Accessed May 1, 2022.
  • [21] The Risk Assessment Information System (RAIS). (2019). University of Tennessee, Available from: https://rais.ornl.gov/index.html.
  • [22] Li J, Huang ZY, Hu Y, Yang H. Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ Sci Pollut Res 2013; 20 (5): 2937-2947. DOI:10.1007/s11356-012-1207-3.
  • [23] Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research, 3rd edn. New York: WH Freeman and Co, 1995.
  • [24] Dural M, Göksu MZL, Özak AA. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem 2007; 102(1): 415-421.DOI:10.1016/j.foodchem.2006.03.001.
  • [25] Türkmen M, Türkmen A, Tepe Y, Ateş A, Gökkuş K. Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish species. Food Chem 2008; 108(2): 794-800. DOI:10.1016/j.foodchem.2007.11.025.
  • [26] Damodharan U, Reddy MV. Heavy metal bioaccumulation in edible fish species from an industrially polluted river and human health risk assessment. Fish Aquat Life 2013; 21(1): 19-27. DOI:10.2478/aopf-2013-0003.
  • [27] Mohammadnabizadeh S, Pourkhabbaz A, Afshari R. Analysis and determination of trace metals (nickel, cadmium, chromium, and lead) in tissues of Pampus argenteus and Platycephalus indicus in the Hara Reserve, Iran. J Toxicol 2014; Article ID: 576496. DOI:10.1155/2014/576496.
  • [28] Jezierska B, Witeska M. Metal Toxicity to Fish. Siedlce: Wydawnictwo Akademii Podlaskiej, 2001.
  • [29] Bat L, Sezgin M, Üstün F, Şahin F. Heavy metal concentrations in ten species of fishes caught in Sinop coastal waters of the Black Sea, Turkey. Turkish J Fish Aquat Sci 2012; 12(5): 371-376. DOI:10.4194/1303-2712-v12_2_24.
  • [30] Jabeen G, Javed M, Azmat H. Assessment of heavy metals in the fish collected from the river Ravi, Pakistan. Pakistan Vet J 2012; 32(1): 107-111.
  • [31] Dural M, Göksu MZL, Özak AA. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem, 2007; 102(1): 415-421. DOI:/10.1016/j.foodchem.2006.03.001.
  • [32] Playle RC. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results. Aquat Toxicol 2004; 67(4): 359-370. DOI:10.1016/j.aquatox.2004.01.017.
  • [33] Rajeshkumar S, Liu Y, Zhang X, Ravikumar B, Bai G, Li X. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 2018; 191: 626-638. DOI:10.1016/j.chemosphere.2017.10.078.
  • [34] Squadrone S, Prearo M, Brizio P, Gavienelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 2013; 90(2): 358-365. DOI:10.1016/j.chemosphere.2012.07.028.
  • [35] Castritsi-Catharios J, Neofitou N, Vorloou AA. Comparison of heavy metal concentrations in fish samples from three fish farms (Eastern Mediterranean) utilizing antifouling paints. Toxicol Environ Chem 2015; 97(1): 116-123. DOI:10.1080/02772248.2014.943226.
  • [36] Sauliutė G, Svecevičius G. Heavy metal interactions during accumulation via direct route in fish: a review. Zool Ecol 2015; 25(1): 77-86. DOI: 10.1080/21658005.2015.1009734.
  • [37] Anonymous. Turkish Food Codex Contaminants Regulation Authority Law, 2011. Official Gazette No. 5996, 29.12.2011-28157. Accessed May 2, 2022.
  • [38] Lounas R, Kasmi H, Chernai S, Amarni N, Ghebriout L, Hamdi B. Heavy metal concentrations in wild and farmed gilthead sea bream from southern Mediterranean Sea-human health risk assessment. Environ Sci Pollut Res 2021; 28(24): 30732-30742. DOI:10.1007/s11356-021-12864-3.
  • [39] Kalantzi I, Pergantis SA, Black KD, Shimmield TM, Papageorgiou N, Tsapakis M, Karakassis I. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem 2016; 194: 659-670. DOI:10.1016/j.foodchem.2015.08.072.
  • [40] Marengo M, Durieux ED, Ternengo S, Lejeune P, Degrange E, Pasqualini V, Gobert S. Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health. Ecotoxicol Environ Saf 2018; 158: 204-212. DOI:10.1016/j.ecoenv.2018.04.034.
  • [41] Food and Drug Administration. Fish and fisheries products hazards and controls guidance, 3rd edn. US FDA. Washington, DC: Center for Food Safety & Applied Nutrition, 2001.
  • [42] Mokhtar MB, Aris AZ, Munusamy V, Praveena SM. Assessment level of heavy metals in Penaeus monodon and Oreochromis spp in selected aquaculture ponds of high densities development area. Eur J Sci Res 2009; 30(3): 348-360.
  • [43] Uysal K, Emre Y, Köse E. The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem J 2008; 90(1): 67-70. DOI:10.1016/j.microc.2008.03.005.
  • [44] Yıldırım Y, Gönülalan Z, Narin I, Soylak M. Evaluation of trace heavy metal levels of some fish species sold at retail in Kayseri, Turkey. Environ Monit Assess 2009; 149(1): 223-228. DOI:10.1007/s10661-008-0196-7.
  • [45] Ozuni E, Dhaskali L, Abeshi J, Zogaj M, Haziri I, Beqiraj D, Latifi F. Heavy metals in fish for public consumption and consumer protection. Nat Montenegrina 2010; 9(3): 843-851.
  • [46] Dural M, Genc E, Sangun MK, Güner Ö. Accumulation of some heavy metals in Hysterothylacium aduncum (Nematoda) and its host sea bream, Sparus aurata (Sparidae) from North-Eastern Mediterranean Sea (Iskenderun Bay). Environ Monit Assess 2011; 174:147-155. DOI:10.1007/s10661-010-1445-0.
  • [47] İlhak Oİ, Karatepe P, Özçelik M. Heavy metal levels in some fish species sold at retail in Elazığ. Fırat Univ Med J Health Sci 2012; 26(2): 99-103.
  • [48] Kalantzi I, Black KD, Pergantis SA, Shimmield TM, Papageorgiou N, Sevastou K, Karakassis I. Metals and other elements in tissues of wild fish from fish farms and comparison with farmed species in sites with oxic and anoxic sediments. Food Chem 2013; 141(2): 680-694. DOI:10.1016/j.foodchem.2013.04.049.
  • [49] Žvab Rožič P, Dolenec T, Baždarić B, Karamarko V, Kniewald G, Dolenec M. Element levels in cultured and wild sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) from the Adriatic Sea and potential risk assessment. Environ Geochem Health 2014; 36(1): 19-39. DOI:10.1007/s10653-013-9516-0.
  • [50] Türkmen A, Tepe Y, Türkmen M. Determination of metals in tissues of fish species from Hurmabogazı Lagoon. Indian J Geo-Mar Sci 2016; 45 (2): 277-282.
  • [51] Tepe Y, Türkmen A, Türkmen M. Comparison of heavy metal accumulation in tissues of economically valuable fish species from two nearby lagoons in Mediterranean coastal area. Indian J Geo-Mar Sci 2017; 46(7): 1333-1338.
  • [52] Bilandžić N, Sedak M, Čalopek B, Đokić M, Varenina I, Kolanović BS, Luburić ĐB, Varga I, Benić M, Roncarati A. Element contents in commercial fish species from the Croatian market. J Food Compos Anal 2018; 71:77-86. DOI:10.1016/j.jfca.2018.02.014.
  • [53] Antović I, Šuković D, Andjelić S, Svrkota N. Heavy metals and radionuclides in muscles of fish species in the South Adriatic-Montenegro. In RAP Conference Proceedings 2019; 4: 96-102. DOI:10.37392/RapProc.2019.19
  • [54] Bouchoucha M, Chekri R, Leufroy A et al. Trace element contamination in fish impacted by bauxite red mud disposal in the Cassidaigne canyon (NW French Mediterranean). Sci Total Environ 2019; 690:1626. DOI:10.1016/j.scitotenv.2019.06.474.
  • [55] Storelli A, Barone G, Dambrosio A, Garofalo R, Busco A, Storelli MM. Occurrence of trace metals in fish from South Italy: Assessment risk to consumer’s health. J Food Compos Anal 2020; 90: 103487. DOI:10.1016/j.jfca.2020.103487.
  • [56] Łuczyńska J, Pietrzak-Fiećko R, Purkiewicz A, Łuczyński MJ. Assessment of fish quality based on the content of heavy metals. Inter J Environ Res Pub Health 2022; 19(4): 2307. DOI:10.3390/ijerph19042307.

TÜRKİYE'DE BİR HALK PAZARINDAN ÖRNEKLENEN ÇİPURALARDAKİ (Sparus aurata) AĞIR METALLERİN SAĞLIK RİSK DEĞERLENDİRMESİ

Year 2023, , 30 - 41, 30.01.2023
https://doi.org/10.18036/estubtdc.1199123

Abstract

Halk pazarından elde edilen deniz ürünlerindeki ağır metal düzeylerinin düzenli olarak değerlendirilmesinde halk sağlığı ile ilgili veriler yetersizdir. Bu çalışmada, piyasada bulunan çipura (Sparus aurata) dokularındaki esansiyel (bakır, çinko) ve esansiyel olmayan metallerin (kadmiyum, kurşun) düzeylerinin incelenmesi amaçlanmıştır. Bu amaçla halk pazarından çipura örnekleri toplanmıştır. Daha sonra, dissekte edilen solungaç, karaciğer, böbrek ve kas dokularında bakır (Cu), çinko (Zn), kadmiyum (Cd) ve kurşun (Pb) metal birikim düzeyleri endüktif olarak eşleştirilmiş plazma kütle spektrometrisi (ICP-MS) ile elde edildi. Balığın halk sağlığı açısından risk oluşturup oluşturmadığını anlamak için kas dokusu için risk değerlendirme formülasyonları (tahmini günlük alım miktarı: EDI, tehlike katsayıları: HQ, tehlike indeksi: HI) hesaplandı. Veriler, Zn, Cd ve Pb derişimlerinin S. aurata'nın böbrek dokusunda ve Cu derişiminin karaciğer dokusunda maximum değerleri aldığını gösterirken, minimum ağır metal düzeylerinin ise kas dokusunda olduğunu göstermiştir. Sonuç olarak çipuranın yenebilir dokusundaki maksimum ağır metal düzeyleri 0.11 mg Cu/kg yaş ağırlık, 0.72 mg Zn/kg yaş ağırlık, 0.12 mg Cd/kg yaş ağırlık ve 0.34 mg Pb/kg yaş ağırlık olarak bulunmuştur. Bunların maksimum değerleri, uluslararası EDI tahmin komiteleri tarafından belirlenen ve izin verilen tolere edilebilir düzeyler altında olduğu için herhangi bir sağlık riski taşımamaktadır. İncelenen HQ ve HI göstergeleri tüm mevsimlerde 1'in altında gözlenmiştir. Ancak ağır metal alımının potansiyel riskler oluşturması her zaman mümkündür. Bu nedenle çalışmanın sonuçlarının farklı açılardan yorumlanması ve diğer bilim insanları tarafından dikkate alınması önemlidir.

References

  • [1] Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23(2): 20-30. DOI:10.1161/01.ATV.0000038493.65177.94.
  • [2] Wang YY, Zhang JX, Tian T, Gao MY, Zhu QR, Xie W, Fu LM, Wang SK, Dai Y. Dietary patterns in association with the risk of elevated blood pressure, lipid profile and fasting plasma glucose among adults in Jiangsu Province of China. Nutr Metab Cardiovasc Dis 2022; 32(1): 69-79. DOI:10.1016/j.numecd.2021.09.004.
  • [3] Antonijevic B, Jankovic S, Curcic M, Durgo K, Stokic E, Srdic B, Tomic-Naglic D. Risk characterization for mercury, dichlorodiphenyltrichloroethane and polychlorinated biphenyls associated with fish consumption in Serbia. Food Chem Toxicol 2011; 49(10): 2586-2593. DOI:10.1016/j.fct.2011.06.078.
  • [4] Khalili Tilami S, Sampels S. Nutritional value of fish: lipids, proteins, vitamins, and minerals. Rev Fish Sci Aquacult 2018; 26(2): 243-253. DOI:10.1080/23308249.2017.1399104.
  • [5] Storelli MM. Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 2008; 46(8): 2782-2788. DOI:10.1016/j.fct.2008.05.011.
  • [6] Taş EÇ, Filipuçi I, Çakır DT, Beyaztaş S, Sunlu U, Toğulga M, Özaydın O, Arslan O. Heavy metal concentrations in tissues of edible fish (Mullus barbatus L.,1758) from Çandarlı Bay (Turkey). Fresenius Environmental Bulletin 2011; Volume 20 – No 11 : 2834-2839.
  • [7] Türkmen M, Türkmen A, Tepe Y, Töre Y, Ateş A. Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem 2009; 113(1): 233-237. DOI:10.1016/j.foodchem.2008.06.071
  • [8] Amundsen PA, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov YS. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 1997; 201(3): 211-224. DOI:10.1016/S0048-9697(97)84058-2.
  • [9] Couture P, Rajotte JW . Morphometric and metabolic indicators of metal stress in wild yellow perch (Perca flavescens) from Sudbury, Ontario: a review. J Environ Monit 2003; 5(2): 216-221. DOI:10.1039/B210338A.
  • [10] DPHHS U. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Zinc. Atlanta, GA: US Department of Public Health and Human Services, 2005.
  • [11] Isangedighi IA, David GS. Heavy metals contamination in fish: effects on human health. J Aquat Sci Mar Biol 2019; 2(4): 7-12.
  • [12] Chapman D. Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. Boca Raton, Florida, USA: CRC Press, 2021.
  • [13] Bakiu R, Santovito G, Hoda A, Shehu J, Durmishaj S, Irato P, Piccinni E. Metallothionein (MT): a good biomarker in marine sentinel species like sea bream (Sparus aurata). Albanian J Agric Sci 2013; 12(2): 247.
  • [14] Benhamed S, Guardiola FA, Martínez S, Martínez-Sánchez MJ, Pérez-Sirvent C, Mars M, Esteban MA. Exposure of the gilthead seabream (Sparus aurata) to sediments contaminated with heavy metals down-regulates the gene expression of stress biomarkers. Toxicol Rep 2016; 3: 364-372. DOI:10.1016/j.toxrep.2016.02.006
  • [15] Turkish Statistical Institute. Fisheries Statistics. 2019. https://www.tuik.gov.tr/Home/Index. Accessed July 22, 2022.
  • [16] Khansari FE, Ghazi-Khansari M, Abdollahi M. Heavy metals content of canned tuna fish. Food Chem 2005; 93(2): 293-296. DOI:10.1016/j.foodchem.2004.09.025
  • [17] Tuzen M. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem Toxicol 2009; 47(8): 1785-1790. DOI:10.1016/j.fct.2009.04.029.
  • [18] Muramoto S. Elimination of copper from Cu‐contaminated fish by long‐term exposure to EDTA and fresh water. J Environ Sci Health Part A 1983; 18(3): 455-461. DOI:10.1080/10934528309375113.
  • [19] Griboff J, Wunderlin DA, Monferran MV. Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem J 2017; 130: 236-244. DOI:10.1016/j.microc.2016.09.013.
  • [20] GDFA (General Directorate of Fisheries and Aquaculture). Fisheries Statistics. Republic of Turkey Ministry of Food Agriculture and Livestock, 2018. Accessed May 1, 2022.
  • [21] The Risk Assessment Information System (RAIS). (2019). University of Tennessee, Available from: https://rais.ornl.gov/index.html.
  • [22] Li J, Huang ZY, Hu Y, Yang H. Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ Sci Pollut Res 2013; 20 (5): 2937-2947. DOI:10.1007/s11356-012-1207-3.
  • [23] Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research, 3rd edn. New York: WH Freeman and Co, 1995.
  • [24] Dural M, Göksu MZL, Özak AA. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem 2007; 102(1): 415-421.DOI:10.1016/j.foodchem.2006.03.001.
  • [25] Türkmen M, Türkmen A, Tepe Y, Ateş A, Gökkuş K. Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish species. Food Chem 2008; 108(2): 794-800. DOI:10.1016/j.foodchem.2007.11.025.
  • [26] Damodharan U, Reddy MV. Heavy metal bioaccumulation in edible fish species from an industrially polluted river and human health risk assessment. Fish Aquat Life 2013; 21(1): 19-27. DOI:10.2478/aopf-2013-0003.
  • [27] Mohammadnabizadeh S, Pourkhabbaz A, Afshari R. Analysis and determination of trace metals (nickel, cadmium, chromium, and lead) in tissues of Pampus argenteus and Platycephalus indicus in the Hara Reserve, Iran. J Toxicol 2014; Article ID: 576496. DOI:10.1155/2014/576496.
  • [28] Jezierska B, Witeska M. Metal Toxicity to Fish. Siedlce: Wydawnictwo Akademii Podlaskiej, 2001.
  • [29] Bat L, Sezgin M, Üstün F, Şahin F. Heavy metal concentrations in ten species of fishes caught in Sinop coastal waters of the Black Sea, Turkey. Turkish J Fish Aquat Sci 2012; 12(5): 371-376. DOI:10.4194/1303-2712-v12_2_24.
  • [30] Jabeen G, Javed M, Azmat H. Assessment of heavy metals in the fish collected from the river Ravi, Pakistan. Pakistan Vet J 2012; 32(1): 107-111.
  • [31] Dural M, Göksu MZL, Özak AA. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem, 2007; 102(1): 415-421. DOI:/10.1016/j.foodchem.2006.03.001.
  • [32] Playle RC. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results. Aquat Toxicol 2004; 67(4): 359-370. DOI:10.1016/j.aquatox.2004.01.017.
  • [33] Rajeshkumar S, Liu Y, Zhang X, Ravikumar B, Bai G, Li X. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 2018; 191: 626-638. DOI:10.1016/j.chemosphere.2017.10.078.
  • [34] Squadrone S, Prearo M, Brizio P, Gavienelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 2013; 90(2): 358-365. DOI:10.1016/j.chemosphere.2012.07.028.
  • [35] Castritsi-Catharios J, Neofitou N, Vorloou AA. Comparison of heavy metal concentrations in fish samples from three fish farms (Eastern Mediterranean) utilizing antifouling paints. Toxicol Environ Chem 2015; 97(1): 116-123. DOI:10.1080/02772248.2014.943226.
  • [36] Sauliutė G, Svecevičius G. Heavy metal interactions during accumulation via direct route in fish: a review. Zool Ecol 2015; 25(1): 77-86. DOI: 10.1080/21658005.2015.1009734.
  • [37] Anonymous. Turkish Food Codex Contaminants Regulation Authority Law, 2011. Official Gazette No. 5996, 29.12.2011-28157. Accessed May 2, 2022.
  • [38] Lounas R, Kasmi H, Chernai S, Amarni N, Ghebriout L, Hamdi B. Heavy metal concentrations in wild and farmed gilthead sea bream from southern Mediterranean Sea-human health risk assessment. Environ Sci Pollut Res 2021; 28(24): 30732-30742. DOI:10.1007/s11356-021-12864-3.
  • [39] Kalantzi I, Pergantis SA, Black KD, Shimmield TM, Papageorgiou N, Tsapakis M, Karakassis I. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem 2016; 194: 659-670. DOI:10.1016/j.foodchem.2015.08.072.
  • [40] Marengo M, Durieux ED, Ternengo S, Lejeune P, Degrange E, Pasqualini V, Gobert S. Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health. Ecotoxicol Environ Saf 2018; 158: 204-212. DOI:10.1016/j.ecoenv.2018.04.034.
  • [41] Food and Drug Administration. Fish and fisheries products hazards and controls guidance, 3rd edn. US FDA. Washington, DC: Center for Food Safety & Applied Nutrition, 2001.
  • [42] Mokhtar MB, Aris AZ, Munusamy V, Praveena SM. Assessment level of heavy metals in Penaeus monodon and Oreochromis spp in selected aquaculture ponds of high densities development area. Eur J Sci Res 2009; 30(3): 348-360.
  • [43] Uysal K, Emre Y, Köse E. The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem J 2008; 90(1): 67-70. DOI:10.1016/j.microc.2008.03.005.
  • [44] Yıldırım Y, Gönülalan Z, Narin I, Soylak M. Evaluation of trace heavy metal levels of some fish species sold at retail in Kayseri, Turkey. Environ Monit Assess 2009; 149(1): 223-228. DOI:10.1007/s10661-008-0196-7.
  • [45] Ozuni E, Dhaskali L, Abeshi J, Zogaj M, Haziri I, Beqiraj D, Latifi F. Heavy metals in fish for public consumption and consumer protection. Nat Montenegrina 2010; 9(3): 843-851.
  • [46] Dural M, Genc E, Sangun MK, Güner Ö. Accumulation of some heavy metals in Hysterothylacium aduncum (Nematoda) and its host sea bream, Sparus aurata (Sparidae) from North-Eastern Mediterranean Sea (Iskenderun Bay). Environ Monit Assess 2011; 174:147-155. DOI:10.1007/s10661-010-1445-0.
  • [47] İlhak Oİ, Karatepe P, Özçelik M. Heavy metal levels in some fish species sold at retail in Elazığ. Fırat Univ Med J Health Sci 2012; 26(2): 99-103.
  • [48] Kalantzi I, Black KD, Pergantis SA, Shimmield TM, Papageorgiou N, Sevastou K, Karakassis I. Metals and other elements in tissues of wild fish from fish farms and comparison with farmed species in sites with oxic and anoxic sediments. Food Chem 2013; 141(2): 680-694. DOI:10.1016/j.foodchem.2013.04.049.
  • [49] Žvab Rožič P, Dolenec T, Baždarić B, Karamarko V, Kniewald G, Dolenec M. Element levels in cultured and wild sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) from the Adriatic Sea and potential risk assessment. Environ Geochem Health 2014; 36(1): 19-39. DOI:10.1007/s10653-013-9516-0.
  • [50] Türkmen A, Tepe Y, Türkmen M. Determination of metals in tissues of fish species from Hurmabogazı Lagoon. Indian J Geo-Mar Sci 2016; 45 (2): 277-282.
  • [51] Tepe Y, Türkmen A, Türkmen M. Comparison of heavy metal accumulation in tissues of economically valuable fish species from two nearby lagoons in Mediterranean coastal area. Indian J Geo-Mar Sci 2017; 46(7): 1333-1338.
  • [52] Bilandžić N, Sedak M, Čalopek B, Đokić M, Varenina I, Kolanović BS, Luburić ĐB, Varga I, Benić M, Roncarati A. Element contents in commercial fish species from the Croatian market. J Food Compos Anal 2018; 71:77-86. DOI:10.1016/j.jfca.2018.02.014.
  • [53] Antović I, Šuković D, Andjelić S, Svrkota N. Heavy metals and radionuclides in muscles of fish species in the South Adriatic-Montenegro. In RAP Conference Proceedings 2019; 4: 96-102. DOI:10.37392/RapProc.2019.19
  • [54] Bouchoucha M, Chekri R, Leufroy A et al. Trace element contamination in fish impacted by bauxite red mud disposal in the Cassidaigne canyon (NW French Mediterranean). Sci Total Environ 2019; 690:1626. DOI:10.1016/j.scitotenv.2019.06.474.
  • [55] Storelli A, Barone G, Dambrosio A, Garofalo R, Busco A, Storelli MM. Occurrence of trace metals in fish from South Italy: Assessment risk to consumer’s health. J Food Compos Anal 2020; 90: 103487. DOI:10.1016/j.jfca.2020.103487.
  • [56] Łuczyńska J, Pietrzak-Fiećko R, Purkiewicz A, Łuczyński MJ. Assessment of fish quality based on the content of heavy metals. Inter J Environ Res Pub Health 2022; 19(4): 2307. DOI:10.3390/ijerph19042307.
There are 56 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Burcu Yeşilbudak 0000-0002-3627-0024

Publication Date January 30, 2023
Published in Issue Year 2023

Cite

APA Yeşilbudak, B. (2023). HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 12(1), 30-41. https://doi.org/10.18036/estubtdc.1199123
AMA Yeşilbudak B. HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. January 2023;12(1):30-41. doi:10.18036/estubtdc.1199123
Chicago Yeşilbudak, Burcu. “HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus Aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 12, no. 1 (January 2023): 30-41. https://doi.org/10.18036/estubtdc.1199123.
EndNote Yeşilbudak B (January 1, 2023) HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 12 1 30–41.
IEEE B. Yeşilbudak, “HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 12, no. 1, pp. 30–41, 2023, doi: 10.18036/estubtdc.1199123.
ISNAD Yeşilbudak, Burcu. “HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus Aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 12/1 (January 2023), 30-41. https://doi.org/10.18036/estubtdc.1199123.
JAMA Yeşilbudak B. HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2023;12:30–41.
MLA Yeşilbudak, Burcu. “HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus Aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 12, no. 1, 2023, pp. 30-41, doi:10.18036/estubtdc.1199123.
Vancouver Yeşilbudak B. HEALTH RISK ASSESSMENT OF HEAVY METALS IN SEABREAM (Sparus aurata) SAMPLED FROM A PUBLIC MARKET IN TÜRKİYE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2023;12(1):30-41.