BibTex RIS Cite

TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ

Year 2019, Volume: 8 Issue: 1, 69 - 84, 01.01.2019

Abstract

Toprak tuzluluğu önemli ürün kayıplarına neden olan başlıca abiyotik stres tiplerinden biridir. Tuzluluk stresi esnasında bitkide geliştirilen tolerans mekanizmalarını anlayabilmek, ürün verim ve kalitesindeki ciddi kayıpları azaltan tolerant çeşitlerin seçimi ve ıslahında önem arz etmektedir. Salisilik asit (SA), bitkilerde tuz stresi dahil pek çok abiyotik streste fizyolojik ve biyokimyasal süreçleri etkileyen önemli bir sinyal moleküldür. Bu çalışmada, SA’nın tuz stresi öncesinde ve stres süresince uygulanmasının, arpa (Hordeum vulgare L. cv. Kalaycı, Erginel, Akhisar) çeşitlerinin köklerinde büyüme parametreleri, prolin miktarı ve antioksidan savunma sistemi enzimlerinin (süperoksit dismutaz (SOD), peroksidaz (POX), katalaz (CAT), askorbat peroksidaz (APX), glutatyon redüktaz (GR)) aktivitelerini nasıl değiştirdiği incelenmiştir. Tuz stresi, arpanın her üç çeşidinde de büyüme parametrelerinde azalmaya neden olmuştur. Strese karşı en tolerant çeşit Kalaycı, en hassas ise Akhisar olarak belirlenmiştir. Ayrıca, SA’nın uygulama süresinin antioksidan savunma sistemi üzerindeki etkisi ortaya konulmuştur. Sonuç olarak, SA antioksidan savunma sistemini uyararak tuz stresinin sebep olduğu oksidatif hasarı azaltmıştır. Bu etki, SA’nın uygulama zamanına ve türün çeşitlerine göre farklılık göstermiştir. Özellikle stres öncesi uygulanan SA, tuz stresine karşı daha yüksek tolerans göstermiş ve çeşitler arasında bu etki daha çok Kalaycı çeşidinde gözlenmiştir.

References

  • Referans1 Sekmen, AH, Ozgur R, Uzılday B, Turkan I. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot 2014; 99: 141-149.
  • Referans2 Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives, Annu Rev Plant Biol 2010; 61: 443-462.
  • Referans3 Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 2011, 9(7): 747-758.
  • Referans4 Flowers TJ. Improving crop salt tolerance. J Exp Bot 2004; 55: 307-319.
  • Referans5 Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 2002; 53: 247-273.
  • Referans6 Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agr 2002; 42: 351-361.
  • Referans7 Syeed S, Anjum NA, Nazar R, Iqbal N. Masood A, Khan NA. Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 2010; 33: 877-886.
  • Referans8 Nazar R, Iqbal N, Syeed S, Khan NA. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 2011; 168: 807-815.
  • Referans9 Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000; 51: 463-499.
  • Referans10 Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 2014; 65: 1241-1257.
  • Referans11 Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. The reactive oxygen gene network in plants. Trends Plant Sci 2004; 9: 490-498
  • Referans12 Turkan I, Demıral T. Recent developments in understanding salinity tolerance. Environ Exp Bot 2009; 67: 2-9.
  • Referans13 Raskin I. Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol 1992; 43: 439-463.
  • Referans14 Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 2000; 30: 157-161.
  • Referans15 Islam S. Malik AL, Islam AKMR, Colmer TD. Salt Tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. J Exp Bot 2007; 58: 1219-1229.
  • Referans16 Hoagland DR, Arnon DI. The water culture method for growing plants without soil. Calif Agric Exp Stn 1950; 347: 1-32.
  • Referans17 Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil 1973; 39: 205-207.
  • Referans18 Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44: 276-287.
  • Referans19 Mika A, Lüthje S. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 2003; 132: 1489-1498.
  • Referans20 Aebi H. Catalase in vitro. In: Packer, L, editor. Methods in Enzymology. Orlando, FL: Academic Press, 1984. pp. 121-126.
  • Referans21 Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 1981; 22: 867-880.
  • Referans22 Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 1976; 133: 21-25.
  • Referans23 Arfan M, Athar HR, Ashraf M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 2007; 6: 685-694.
  • Referans24 Németh M, Janda T, Horváth E, Páldi E, Szalai G. Exogenous salicylic acid ıncreases polyamine content but may decrease drought tolerance in maize. Plant Sci 2002; 162: 569-574.
  • Referans25 Scott IM, Clarke SM, Wood JE, Mur LA. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 2004; 135: 1040-1049.
  • Referans26 Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by nacl and osmotic stress in Arabidopsis seedlings. Plant Physiol 2001; 126: 1024-1030.
  • Referans27 Ramagopal S. Salinity stress induced tissue specific proteins in barley seedlings. Plant Physiol 1987; 84: 324-331.
  • Referans28 Munns R. Comparative physiology of salt and water stress. Plant Cell Environ 2002; 25: 239-250.
  • Referans29 Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 2003; 164: 317-322.
  • Referans30 Palma F, Lluch C, Iribarne C, Garcia-Garrida JM, Tejera Garcia NA. combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regul, 2009; 58: 307-316.
  • Referans31 Misra N, Saxena P. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 2009; 177: 181-189.
  • Referans32 Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci 2010; 15: 89-97.
  • Referans33 Rai V K. Role of amino acids in plant responses to stress. Biol Plant 2002; 45: 481-487.
  • Referans34 Gzik A. Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 1996; 36: 29-38.
  • Referans35 Petrusa L, Winicov I. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 1997; 35: 303–310.
  • Referans36 Koca H, Bor M, Özdemir F, Türkan I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 2007; 60: 344–351.
  • Referans37 El-Tayeb MA. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 2005; 45: 215-224.
  • Referans38 Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 2005; 60: 324-349.
  • Referans39 Hsu SY, Kao CH. Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves. Plant Growth Regul 2003; 39: 83-90.
  • Referans40 Khan W, Prithiviraj B, Smith DL. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 2003; 160: 485-492.
  • Referans41 Sreenivasulu N, Grimm B, Wobus U, Weschke W. Differential response of antioxidant compounds to salinity stress in salt tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 2000; 109: 435–442.
  • Referans42 Amor NB, Jiménez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C. Response of antioxidant systems to NaCl stress in the halophyte, Cakile maritima. Physiol Plant 2006; 126: 446-457.
  • Referans43 Sabra A, Daayf F, Renault S. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Sci Hortic 2012; 135: 23-31.
  • Referans44 Seckin B, Türkan I, Sekmen AH, Ozfidan C. The Role of antioxidant defense system at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot 2010; 69: 76-85.
  • Referans45 Azevedo Neto AD, Prico JT, Eneas-Filho J, Braga De Abreu CE, Gomes-Filho E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 2006; 56: 235–241.
  • Referans46 Bor M, Özdemir F, Türkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 2003; 164: 77-84.
  • Referans47 Demiral T, Turkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 2005; 53: 247–257.
  • Referans48 Hernández JA, Jiménez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with ınduction of antioxidant defenses. Plant Cell Environ 2000; 23: 853-862.
  • Referans49 Acar O, Türkan I, Ozdemir F. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgate L.) varieties, Acta Physiol Plant 2001; 23: 351-356.
  • Referans50 Özmen AD, Özdemir F, Türkan I. Effects of paclobutrazol on response of two barley cultivars to salt stress. Biol Plant 2003; 46: 263-268.
  • Referans51 Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 2010; 68: 14-25.
  • Referans52 Chen Z, Silva H, Klessig DF. Active oxygen species in the ınduction of plant systemic acquired resistance by salicylic acid. Science 1993; 262: 1883-1886.
  • Referans53 Ansari MS. Misra N. Miraculous role of salicylic acid in plant and animal system. Am J Plant Physiol 2007; 2: 51-58.
  • Referans54 Durner J, Klessig DF. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two ınducers of plant defense responses. Proc Natl Acad Sci USA 1995; 92: 11312-11316.
  • Referans55 Shakirova FM. Role of hormonal system in the manifestation of growth promoting and antistress action of salicylic acid. In: Hayat S, Ahmad A, editors. Salicylic Acid: A Plant Hormone. Springer, Dordrecht, 2007. pp. 69-89.
  • Referans56 Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A. Effect of salicylic acid on salinity induced changes in Brassica juncea. J Integr Plant Bio 2008; 50: 1-4.

EFFECTS OF TIME COURSE SALICYLIC ACID ON THE ANTIOXIDANT DEFENSE SYSTEM IN BARLEY ROOTS UNDER SALT STRESS

Year 2019, Volume: 8 Issue: 1, 69 - 84, 01.01.2019

Abstract

Soil salinity is one of the major abiotic stress types causing significant crop losses. To understand tolerance mechanisms occuring in plants during salinity stress is significant for choosing and improving tolerant species decreasing serious loosings in yield and quality in crops. Salicylic acid (SA) is an important signalling molecule affecting physiological and biochemical processes in many abiotic stresses including salt stress. In this study, how altered the growth parameters, proline amount, and the activities of antioxidant defense system enzymes (superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX),glutathione reductase (GR)) in roots of barley (Hordeum vulgare L. cv. Kalaycı, Erginel, Akhisar) cultivars with the application of pre- and simultaneous treatment of SA was investigated. Salt stress caused a decrease in growth parameters in all cultivars of barley. It was identified that Kalaycı was the most tolerant and Akhisar the most sensitive genotype against the stress. Moreover, the effect of time-dependent application of SA on the antioxidant defense system has been established. As a result, SA reduced the salt-induced oxidative damage caused by salt stress by stimulating the antioxidant defense system. This effect differed according to the application time of the SA and genotypes. Especially pretreatment of SA displayed higher tolerance to salt stress and this effect was more observed in Kalaycı among cultivars.

References

  • Referans1 Sekmen, AH, Ozgur R, Uzılday B, Turkan I. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot 2014; 99: 141-149.
  • Referans2 Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives, Annu Rev Plant Biol 2010; 61: 443-462.
  • Referans3 Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 2011, 9(7): 747-758.
  • Referans4 Flowers TJ. Improving crop salt tolerance. J Exp Bot 2004; 55: 307-319.
  • Referans5 Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 2002; 53: 247-273.
  • Referans6 Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agr 2002; 42: 351-361.
  • Referans7 Syeed S, Anjum NA, Nazar R, Iqbal N. Masood A, Khan NA. Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 2010; 33: 877-886.
  • Referans8 Nazar R, Iqbal N, Syeed S, Khan NA. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 2011; 168: 807-815.
  • Referans9 Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000; 51: 463-499.
  • Referans10 Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 2014; 65: 1241-1257.
  • Referans11 Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. The reactive oxygen gene network in plants. Trends Plant Sci 2004; 9: 490-498
  • Referans12 Turkan I, Demıral T. Recent developments in understanding salinity tolerance. Environ Exp Bot 2009; 67: 2-9.
  • Referans13 Raskin I. Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol 1992; 43: 439-463.
  • Referans14 Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 2000; 30: 157-161.
  • Referans15 Islam S. Malik AL, Islam AKMR, Colmer TD. Salt Tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. J Exp Bot 2007; 58: 1219-1229.
  • Referans16 Hoagland DR, Arnon DI. The water culture method for growing plants without soil. Calif Agric Exp Stn 1950; 347: 1-32.
  • Referans17 Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil 1973; 39: 205-207.
  • Referans18 Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44: 276-287.
  • Referans19 Mika A, Lüthje S. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 2003; 132: 1489-1498.
  • Referans20 Aebi H. Catalase in vitro. In: Packer, L, editor. Methods in Enzymology. Orlando, FL: Academic Press, 1984. pp. 121-126.
  • Referans21 Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 1981; 22: 867-880.
  • Referans22 Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 1976; 133: 21-25.
  • Referans23 Arfan M, Athar HR, Ashraf M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 2007; 6: 685-694.
  • Referans24 Németh M, Janda T, Horváth E, Páldi E, Szalai G. Exogenous salicylic acid ıncreases polyamine content but may decrease drought tolerance in maize. Plant Sci 2002; 162: 569-574.
  • Referans25 Scott IM, Clarke SM, Wood JE, Mur LA. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 2004; 135: 1040-1049.
  • Referans26 Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by nacl and osmotic stress in Arabidopsis seedlings. Plant Physiol 2001; 126: 1024-1030.
  • Referans27 Ramagopal S. Salinity stress induced tissue specific proteins in barley seedlings. Plant Physiol 1987; 84: 324-331.
  • Referans28 Munns R. Comparative physiology of salt and water stress. Plant Cell Environ 2002; 25: 239-250.
  • Referans29 Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 2003; 164: 317-322.
  • Referans30 Palma F, Lluch C, Iribarne C, Garcia-Garrida JM, Tejera Garcia NA. combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regul, 2009; 58: 307-316.
  • Referans31 Misra N, Saxena P. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 2009; 177: 181-189.
  • Referans32 Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci 2010; 15: 89-97.
  • Referans33 Rai V K. Role of amino acids in plant responses to stress. Biol Plant 2002; 45: 481-487.
  • Referans34 Gzik A. Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 1996; 36: 29-38.
  • Referans35 Petrusa L, Winicov I. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 1997; 35: 303–310.
  • Referans36 Koca H, Bor M, Özdemir F, Türkan I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 2007; 60: 344–351.
  • Referans37 El-Tayeb MA. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 2005; 45: 215-224.
  • Referans38 Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 2005; 60: 324-349.
  • Referans39 Hsu SY, Kao CH. Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves. Plant Growth Regul 2003; 39: 83-90.
  • Referans40 Khan W, Prithiviraj B, Smith DL. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 2003; 160: 485-492.
  • Referans41 Sreenivasulu N, Grimm B, Wobus U, Weschke W. Differential response of antioxidant compounds to salinity stress in salt tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 2000; 109: 435–442.
  • Referans42 Amor NB, Jiménez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C. Response of antioxidant systems to NaCl stress in the halophyte, Cakile maritima. Physiol Plant 2006; 126: 446-457.
  • Referans43 Sabra A, Daayf F, Renault S. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Sci Hortic 2012; 135: 23-31.
  • Referans44 Seckin B, Türkan I, Sekmen AH, Ozfidan C. The Role of antioxidant defense system at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot 2010; 69: 76-85.
  • Referans45 Azevedo Neto AD, Prico JT, Eneas-Filho J, Braga De Abreu CE, Gomes-Filho E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 2006; 56: 235–241.
  • Referans46 Bor M, Özdemir F, Türkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 2003; 164: 77-84.
  • Referans47 Demiral T, Turkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 2005; 53: 247–257.
  • Referans48 Hernández JA, Jiménez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with ınduction of antioxidant defenses. Plant Cell Environ 2000; 23: 853-862.
  • Referans49 Acar O, Türkan I, Ozdemir F. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgate L.) varieties, Acta Physiol Plant 2001; 23: 351-356.
  • Referans50 Özmen AD, Özdemir F, Türkan I. Effects of paclobutrazol on response of two barley cultivars to salt stress. Biol Plant 2003; 46: 263-268.
  • Referans51 Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 2010; 68: 14-25.
  • Referans52 Chen Z, Silva H, Klessig DF. Active oxygen species in the ınduction of plant systemic acquired resistance by salicylic acid. Science 1993; 262: 1883-1886.
  • Referans53 Ansari MS. Misra N. Miraculous role of salicylic acid in plant and animal system. Am J Plant Physiol 2007; 2: 51-58.
  • Referans54 Durner J, Klessig DF. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two ınducers of plant defense responses. Proc Natl Acad Sci USA 1995; 92: 11312-11316.
  • Referans55 Shakirova FM. Role of hormonal system in the manifestation of growth promoting and antistress action of salicylic acid. In: Hayat S, Ahmad A, editors. Salicylic Acid: A Plant Hormone. Springer, Dordrecht, 2007. pp. 69-89.
  • Referans56 Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A. Effect of salicylic acid on salinity induced changes in Brassica juncea. J Integr Plant Bio 2008; 50: 1-4.
There are 56 citations in total.

Details

Journal Section Articles
Authors

Hülya Torun This is me

Faik Ahmet Ayaz This is me

Publication Date January 1, 2019
Published in Issue Year 2019 Volume: 8 Issue: 1

Cite

APA Torun, H., & Ayaz, F. A. (2019). TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 8(1), 69-84.
AMA Torun H, Ayaz FA. TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. January 2019;8(1):69-84.
Chicago Torun, Hülya, and Faik Ahmet Ayaz. “TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum Vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 8, no. 1 (January 2019): 69-84.
EndNote Torun H, Ayaz FA (January 1, 2019) TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 8 1 69–84.
IEEE H. Torun and F. A. Ayaz, “TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 8, no. 1, pp. 69–84, 2019.
ISNAD Torun, Hülya - Ayaz, Faik Ahmet. “TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum Vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 8/1 (January 2019), 69-84.
JAMA Torun H, Ayaz FA. TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2019;8:69–84.
MLA Torun, Hülya and Faik Ahmet Ayaz. “TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum Vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 8, no. 1, 2019, pp. 69-84.
Vancouver Torun H, Ayaz FA. TUZ STRESİ KOŞULLARINDA SALİSİLİK ASİDİN ZAMANA BAĞLI UYGULANMASININ ARPA (Hordeum vulgare L.) KÖKLERİNİN ANTİOKSİDAN SAVUNMA SİSTEMİ ÜZERİNE ETKİLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2019;8(1):69-84.