Research Article
PDF EndNote BibTex RIS Cite

SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758)

Year 2022, Volume 11, Issue 2, 39 - 49, 26.07.2022
https://doi.org/10.18036/estubtdc.1045591

Abstract

This study aimed to investigate some morphological features and heavy metal accumulation in muscle tissue of Ruditapes decussatus (Linnaeus, 1758) in the spring and autumn seasons of 2018 in the Yumurtalık Coastline of İskenderun Bay located in the northeastern Mediterranean Sea. To this end, shell length (SL), total weight (TW), shell height (SH), shell inflation (SI), shell weight (SW), roundness index (RI), cup index (CI) and total length-weight relationship (LWR) of Bivalvia and heavy metal accumulation in the muscle tissue of Bivalvia were measured for two seasons. Minimum and maximum values of SL, TW, SH, SI, SW, RI and CI were determined as 21.50-39.00 mm, 0.80-22.15 g, 10.50-28.70 mm, 9.11-20.90 mm, 3.08-4.66 g, 1.03-2.14 and 0.58-0.67 respectively. The relationship between total length and total weight of R. decussatus was calculated to be W=0.0052*SL2.54 for spring and W=0.0031*SL2.88 for autumn. The growth type of Bivalvia specimens was determined as isometric growth (2.971). Heavy metal accumulation in the muscle tissue in spring and autumn seasons was found as statistically significant only for zinc and copper in different seasons (P<0.05). Biometric data of Bivalvia speciemens and muscle tissue heavy metal level are given and discussed in comparison with the results obtained from other studies. Considering the height-weight relationship, growth type and tissue heavy metal accumulation, it can be said that this area is ecologically suitable for R. decussatus.

References

  • [1] Márquez F, Robledo J, Escati-Peñaloza G, Van der Molen S. Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in north Patagonia, Argentina. Fish Res 2010; 101(1-2): 127-131.
  • [2] Schöne BR. A ‘clam-ring’ master-chronology constructed from a short-lived bivalve mollusc from the northern Gulf of California, USA. The Holocene 2003; 13(1): 39-49.
  • [3] Gosling E. Bivalve molluscs: Biology, Ecology and Culture. UK: John Wiley & Sons, 2008.
  • [4] Krantz DE, Williams DF, Jones DS. Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeogr. Palaeoclim Palaeoecol 1987; 58(3-4): 249-266.
  • [5] Wanamaker Jr. AD, Kreutz KJ, Schöne BR, Maasch KA, Pershing AJ, Borns HW, Introne DS, Feindel S. A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica). Int J Earth Sci 2009; 98(1): 19-29.
  • [6] Bebianno MJ, Geret F, Hoarau P, Serafim MA, Coelho MR, Gnassia-Barelli M, Romeo M. Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomark 2004; 9(4-5): 305-330.
  • [7] Caill-Milly N, Bru N, Mahé K, Borie C, D'Amico F. Shell shape analysis and spatial allometry patterns of Manila clam (Ruditapes philippinarum) in a mesotidal coastal lagoon. J Mar Biol 2012; 1: 1-11.
  • [8] Farag EA, Dekinesh SI, El-Odessy HM. Taxonomical studies on the edible bivalve mollusks inhabiting the coastal zones of Alexandria, Egypt. Pak J Biol Sci 1999; 2(4): 1341-1349.
  • [9] Jara-Jara R, Abad M, Pazos AJ, Perez-Paralle ML, Sanchez JL. Growth and reproductive patterns in Venerupis pullastra seed reared in waste water effluent from a fish farm in Galicia (N.W. Spain). J Shellfish Res 2000; 19(2): 949-956.
  • [10] Freneix S, Saint Martin JP, Moissette P. Bivalves hétérodontes du Messinien d’Oranie (Algérie occidentale). Bull Mus Natl Hist Nat 1987; 4(9): 415-453.
  • [11] Rayment WJ. Venerupis corrugata. Pullet carpet shell. In: Tyler-Walters H, Hiscock K editors. Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Mar Biol Assoc UK, 2007.
  • [12] Parache A, La palourde. Pêch Marit Paris 1982; 61: 496-507.
  • [13] Poppe GT, Goto Y. European seashells. Vol 1 (Polyplacophora, Caudofoveata, Solenogastra, Gastropoda). Wiesbaden: Verlag Christa Hemmen, 1991.
  • [14] Özsuer M, Sunlu U. Temporal Trends of Some Trace Metals in Lithophaga lithophaga (L., 1758) from Izmir Bay (Eastern Aegean Sea). Bull Environ Contam Toxicol 2013; 91(4): 409-414.
  • [15] Hu H. Exposure to metals. Occupational and Environmental Medicine 2000; 27(4): 983-996.
  • [16] Kayhan FE, Muşlu MN, Koç ND. Bazı Ağır Metallerin Sucul Organizmalar Üzerinde Yarattığı Stres ve Biyolojik Yanıtlar. J Fish Sci 2009; 3(2): 153-162.
  • [17] Bakır BB, Öztürk B, Doğan A, Önen M. Mollusc fauna of Iskenderun Bay with a checklist of the region. Turkish J Fish Aquat Sci 2012; 12(1): 171-184.
  • [18] Başusta N, Kumlu M, Gökçe MA, Göçer M. Seasonal change and productivity index of species by trawled in Yumurtalık Bay. Ege J Fish Aquat Sci 2002; 19(1): 1-1.
  • [19] Demir M. Shells of Mollusca collected from the seas of Turkey. Turkish J Zool 2003; 27(2): 101-140.
  • [20] Öztürk B, Doğan A, Bakir BB, Salman A. Marine molluscs of the Turkish coasts: an updated checklist. Turkish J Zool 2014; 38(6): 832-879.
  • [21] Marine Species Identification Portal. Taxonomic Database on Marine Species. http://species-identification.org/about.php. Accessed on August 2020.
  • [22] Plessi M, Bertelli D, Monzani A. Mercury and selenium content in selected seafood. J Food Compos Anal 2001; 14(5): 461-467.
  • [23] Pauly D. Some simple methods for the assessment of tropical fish stocks. FAO Fish Technol Pap 1984; 234: 1-52.
  • [24] O’Meley CM. Effects of Shell Abrasion and Aerial Exposure on the Performance of Pacific Oysters Crassostrea gigas (Thunberg, 1793) Cultured in Tasmania, Australia. PhD, University of Tasmania, Australia, 1995.
  • [25] Ricker WE. Computation and interpretation of biological statistics of fish populations, Bull Fish Res Bd Can 1975; 191: 1-382.
  • [26] Pouvreau S, Gangnery A, Tiapari J, Legarde F, Garnier M, Bodoy A. Gametogenetic cycle and reproductive effort of the tropical blacklip pearl oyster, Pinctada margaritifera (Bivalvia: Pteriidae), cultivated in Takapoto atol (French Polynesia). Aquat Living Resour 2000; 13: 37-48.
  • [27] Amane Z, Tazi L, Idhalla M, Chlaida M. Morphometric analysis of European clam Ruditapes decussatus in Morocco. Aquac Aquar Conserv Legis 2019; 12(5): 1623-1634.
  • [28] Mohammad SH, Belal AAM, Hassan SSZ. Growth, age and reproduction of the commercially clams Venerupis aurea and Ruditapes decussatus in Timsah Lake, Suez Canal, Egypt. Indian J Geo-Mar Sci 2014; 43(4): 589-600.
  • [29] Jurić I, Bušelić I, Ezgeta-Balić D, Vrgoč N, Peharda M. Age, growth and condition index of Venerupis decussata (Linnaeus, 1758) in the Eastern Adriatic Sea. Turkish J Fish Aquat Sci 2012; 12(3): 613-618.
  • [30] Sherif, RA. Allometry, population dynamics, shell growth and age determination of the bivalve Venerupis decussatus collected from Port Said, Egypt. Proc 6th Con Biol Sci (Zool) 2010; 6(10): 1-23.
  • [31] Kandeel, K. Length-Weight Relationships and Monthly Variations in Body Weights and Condition Indices of Two Clam's Species; Venerupis aurea and Tapes decussata in Lake Timsah, Egypt. Catrina: Int J Environ Sci 2008; 3(1): 111-124.
  • [32] Dincer T. Differences of Turkish clam (Ruditapes decussates) and Manila clam (Ruditapes philippinarum) according to their proximate composition and heavy metal contents. J Shellfish Res 2006; 25(2): 455-459.
  • [33] Ojea J, Pazos AJ, Martinez D, Novoa S, Sanchez JL, Abad M. Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aquac 2004; 238(1-4): 451-468.
  • [34] Urrutia MB, Ibarrola I, Iglesias JIP, Navarro E. Energetics of growth and reproduction in a high-tidal population of the clam Ruditapes decussatus from Urdaibai Estuary (Basque Country, N. Spain). J Sea Res 1999; 42(1): 35- 48.
  • [35] Garcia F. Interprétation des stries valvaires pour l'évaluation de la croissance de Ruditapes decussatus L. Oceanol Acta 1993; 16(2): 199-203.
  • [36] Loosanoff V, Davis HC. Rearing of bivalve larvae. Adv Mar Biol 1963; 1: 1-136.
  • [37] Yuan Y, Sun T, Wang H, Liu Y, Pan Y, Xie Y, Huangb H, Fan Z. Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South China Sea): Consumption advisory. Mar Pollut Bull 2020; 150: 110717.
  • [38] Esposito G, Meloni D, Abete MC, Colombero G, Mantia M, Pastorino P, Prearo M, Pais A, Antuofermo E, Squadrone S. The bivalve Ruditapes decussatus: A biomonitor of trace elements pollution in Sardinian coastal lagoons (Italy). Environ Poll 2018; 242: 1720-1728.
  • [39] Liu J, Cao L, Dou S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar Poll Bull 2017; 117(1-2): 98-110.
  • [40] Abdallah MAM. Bioaccumulation of heavy metals in mollusca species and assessment of potential risks to human health. Bull Environ Contam Toxicol 2013; 90(5): 552-557.
  • [41] El Nemr A, Khaled A, Moneer AA, El Sikaily A. Risk probability due to heavy metals in bivalve from Egyptian Mediterranean coast. The Egyptian J Aquat Res 2012; 38(2): 67-75.
  • [42] Storelli MM, Marcotrigiano GO. Heavy Metal Monitoring in Fish, Bivalve Molluscs, Water. Bull Environ Contam Toxicol 2001; 66: 365-370.
  • [43] Aberkali HB, Trueman ER. Effects of environmental stress on marine bivalve molluscs. Adv Mar Biol 1985; 22: 101-198.
  • [44] Boyden CR. Trace metals content and body size in molluscs. Nat 1974; 251: 311-314.
  • [45] Abbott OJ. The toxicity of ammonium molybdate to marine invertebrates. Mar Poll Bull 1977; 8(9): 204-205.
  • [46] Johannessen OH. Length and weight relationships and the potential production of the bivalve Venerupis pullastra (Montagu) on a sheltered beach in western Norway. Sarsia 1973; 53(1): 41-48.
  • [47] Mol S, Çakalp Z, Çırpıcı E. Su Ürünlerinde İz Element Birikimi ve İnsan Sağlığına Etkileri, Hasad Gıda Dergisi 2005; 244: 1-1.

Ruditapes decussatus’un (Linnaeus, 1758) BAZI MORFOLOJİK ÖZELLİKLERİ VE KAS DOKUSUNDAKİ AĞIR METAL BİRİKİMİ

Year 2022, Volume 11, Issue 2, 39 - 49, 26.07.2022
https://doi.org/10.18036/estubtdc.1045591

Abstract

Bu çalışmada Kuzey Doğu Akdeniz'de yer alan İskenderun Körfezi Yumurtalık Sahili’nde 2018 ilkbahar ve sonbahar mevsimlerinde Ruditapes decussatus’un (Linnaeus, 1758) bazı morfolojik özelliklerinin ve kas dokusundaki ağır metal birikiminin araştırılması amaçlanmıştır. Buna bağlı olarak, Bivalvia’nın kabuk uzunluğu (SL), toplam ağırlığı (TW), kabuk yüksekliği (SH), kabuk şişkinliği (SI), kabuk ağırlığı (SW), yuvarlaklık indeksi (RI), cup indeksi (CI) ve toplam uzunluk- ağırlık ilişkisi (LWR) ve Bivalvia’nın kas dokusundaki ağır metal birikimi iki mevsim için ölçüldü. SL, TW, SH, SI, SW, RI ve CI değerlerinin minimum ve maksimum değerleri sırasıyla 21.50-39.00 mm, 0.80-22.15 g, 10.50-28.70 mm, 9.11-20.90 mm, 3.08-4.66 g, 1.03-2.14 ve 0.58-0.67 olarak belirlenmiştir. R. decussatus’ın toplam boy ve toplam ağırlığı arasındaki ilişki ilkbahar için W=0.0052*SL2.54 ve sonbahar için W=0.0031*SL2.88 olarak hesaplanmıştır. Bivalvia örneklerinin büyüme tipi izometrik büyüme olarak belirlenmiştir (2.971). İlkbahar ve sonbahar mevsimlerinde kas dokusunda ağır metal birikimi sadece çinko ve bakır için farklı sezonlarda istatistiksel önemli bulunmuştur (P<0.05). Bivalvia türünün biyometrik verileri ve kas dokusu ağır metal düzeyi verilmiş ve diğer çalışmalardan elde edilen sonuçlarla karşılaştırılarak tartışılmıştır. Boy-ağırlık ilişkisi, büyüme tipi ve doku ağır metal birikimi göz önüne alındığında, bu bölgenin ekolojik olarak R. decussatus için uygun olduğu söylenebilir.

References

  • [1] Márquez F, Robledo J, Escati-Peñaloza G, Van der Molen S. Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in north Patagonia, Argentina. Fish Res 2010; 101(1-2): 127-131.
  • [2] Schöne BR. A ‘clam-ring’ master-chronology constructed from a short-lived bivalve mollusc from the northern Gulf of California, USA. The Holocene 2003; 13(1): 39-49.
  • [3] Gosling E. Bivalve molluscs: Biology, Ecology and Culture. UK: John Wiley & Sons, 2008.
  • [4] Krantz DE, Williams DF, Jones DS. Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeogr. Palaeoclim Palaeoecol 1987; 58(3-4): 249-266.
  • [5] Wanamaker Jr. AD, Kreutz KJ, Schöne BR, Maasch KA, Pershing AJ, Borns HW, Introne DS, Feindel S. A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica). Int J Earth Sci 2009; 98(1): 19-29.
  • [6] Bebianno MJ, Geret F, Hoarau P, Serafim MA, Coelho MR, Gnassia-Barelli M, Romeo M. Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomark 2004; 9(4-5): 305-330.
  • [7] Caill-Milly N, Bru N, Mahé K, Borie C, D'Amico F. Shell shape analysis and spatial allometry patterns of Manila clam (Ruditapes philippinarum) in a mesotidal coastal lagoon. J Mar Biol 2012; 1: 1-11.
  • [8] Farag EA, Dekinesh SI, El-Odessy HM. Taxonomical studies on the edible bivalve mollusks inhabiting the coastal zones of Alexandria, Egypt. Pak J Biol Sci 1999; 2(4): 1341-1349.
  • [9] Jara-Jara R, Abad M, Pazos AJ, Perez-Paralle ML, Sanchez JL. Growth and reproductive patterns in Venerupis pullastra seed reared in waste water effluent from a fish farm in Galicia (N.W. Spain). J Shellfish Res 2000; 19(2): 949-956.
  • [10] Freneix S, Saint Martin JP, Moissette P. Bivalves hétérodontes du Messinien d’Oranie (Algérie occidentale). Bull Mus Natl Hist Nat 1987; 4(9): 415-453.
  • [11] Rayment WJ. Venerupis corrugata. Pullet carpet shell. In: Tyler-Walters H, Hiscock K editors. Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Mar Biol Assoc UK, 2007.
  • [12] Parache A, La palourde. Pêch Marit Paris 1982; 61: 496-507.
  • [13] Poppe GT, Goto Y. European seashells. Vol 1 (Polyplacophora, Caudofoveata, Solenogastra, Gastropoda). Wiesbaden: Verlag Christa Hemmen, 1991.
  • [14] Özsuer M, Sunlu U. Temporal Trends of Some Trace Metals in Lithophaga lithophaga (L., 1758) from Izmir Bay (Eastern Aegean Sea). Bull Environ Contam Toxicol 2013; 91(4): 409-414.
  • [15] Hu H. Exposure to metals. Occupational and Environmental Medicine 2000; 27(4): 983-996.
  • [16] Kayhan FE, Muşlu MN, Koç ND. Bazı Ağır Metallerin Sucul Organizmalar Üzerinde Yarattığı Stres ve Biyolojik Yanıtlar. J Fish Sci 2009; 3(2): 153-162.
  • [17] Bakır BB, Öztürk B, Doğan A, Önen M. Mollusc fauna of Iskenderun Bay with a checklist of the region. Turkish J Fish Aquat Sci 2012; 12(1): 171-184.
  • [18] Başusta N, Kumlu M, Gökçe MA, Göçer M. Seasonal change and productivity index of species by trawled in Yumurtalık Bay. Ege J Fish Aquat Sci 2002; 19(1): 1-1.
  • [19] Demir M. Shells of Mollusca collected from the seas of Turkey. Turkish J Zool 2003; 27(2): 101-140.
  • [20] Öztürk B, Doğan A, Bakir BB, Salman A. Marine molluscs of the Turkish coasts: an updated checklist. Turkish J Zool 2014; 38(6): 832-879.
  • [21] Marine Species Identification Portal. Taxonomic Database on Marine Species. http://species-identification.org/about.php. Accessed on August 2020.
  • [22] Plessi M, Bertelli D, Monzani A. Mercury and selenium content in selected seafood. J Food Compos Anal 2001; 14(5): 461-467.
  • [23] Pauly D. Some simple methods for the assessment of tropical fish stocks. FAO Fish Technol Pap 1984; 234: 1-52.
  • [24] O’Meley CM. Effects of Shell Abrasion and Aerial Exposure on the Performance of Pacific Oysters Crassostrea gigas (Thunberg, 1793) Cultured in Tasmania, Australia. PhD, University of Tasmania, Australia, 1995.
  • [25] Ricker WE. Computation and interpretation of biological statistics of fish populations, Bull Fish Res Bd Can 1975; 191: 1-382.
  • [26] Pouvreau S, Gangnery A, Tiapari J, Legarde F, Garnier M, Bodoy A. Gametogenetic cycle and reproductive effort of the tropical blacklip pearl oyster, Pinctada margaritifera (Bivalvia: Pteriidae), cultivated in Takapoto atol (French Polynesia). Aquat Living Resour 2000; 13: 37-48.
  • [27] Amane Z, Tazi L, Idhalla M, Chlaida M. Morphometric analysis of European clam Ruditapes decussatus in Morocco. Aquac Aquar Conserv Legis 2019; 12(5): 1623-1634.
  • [28] Mohammad SH, Belal AAM, Hassan SSZ. Growth, age and reproduction of the commercially clams Venerupis aurea and Ruditapes decussatus in Timsah Lake, Suez Canal, Egypt. Indian J Geo-Mar Sci 2014; 43(4): 589-600.
  • [29] Jurić I, Bušelić I, Ezgeta-Balić D, Vrgoč N, Peharda M. Age, growth and condition index of Venerupis decussata (Linnaeus, 1758) in the Eastern Adriatic Sea. Turkish J Fish Aquat Sci 2012; 12(3): 613-618.
  • [30] Sherif, RA. Allometry, population dynamics, shell growth and age determination of the bivalve Venerupis decussatus collected from Port Said, Egypt. Proc 6th Con Biol Sci (Zool) 2010; 6(10): 1-23.
  • [31] Kandeel, K. Length-Weight Relationships and Monthly Variations in Body Weights and Condition Indices of Two Clam's Species; Venerupis aurea and Tapes decussata in Lake Timsah, Egypt. Catrina: Int J Environ Sci 2008; 3(1): 111-124.
  • [32] Dincer T. Differences of Turkish clam (Ruditapes decussates) and Manila clam (Ruditapes philippinarum) according to their proximate composition and heavy metal contents. J Shellfish Res 2006; 25(2): 455-459.
  • [33] Ojea J, Pazos AJ, Martinez D, Novoa S, Sanchez JL, Abad M. Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aquac 2004; 238(1-4): 451-468.
  • [34] Urrutia MB, Ibarrola I, Iglesias JIP, Navarro E. Energetics of growth and reproduction in a high-tidal population of the clam Ruditapes decussatus from Urdaibai Estuary (Basque Country, N. Spain). J Sea Res 1999; 42(1): 35- 48.
  • [35] Garcia F. Interprétation des stries valvaires pour l'évaluation de la croissance de Ruditapes decussatus L. Oceanol Acta 1993; 16(2): 199-203.
  • [36] Loosanoff V, Davis HC. Rearing of bivalve larvae. Adv Mar Biol 1963; 1: 1-136.
  • [37] Yuan Y, Sun T, Wang H, Liu Y, Pan Y, Xie Y, Huangb H, Fan Z. Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South China Sea): Consumption advisory. Mar Pollut Bull 2020; 150: 110717.
  • [38] Esposito G, Meloni D, Abete MC, Colombero G, Mantia M, Pastorino P, Prearo M, Pais A, Antuofermo E, Squadrone S. The bivalve Ruditapes decussatus: A biomonitor of trace elements pollution in Sardinian coastal lagoons (Italy). Environ Poll 2018; 242: 1720-1728.
  • [39] Liu J, Cao L, Dou S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar Poll Bull 2017; 117(1-2): 98-110.
  • [40] Abdallah MAM. Bioaccumulation of heavy metals in mollusca species and assessment of potential risks to human health. Bull Environ Contam Toxicol 2013; 90(5): 552-557.
  • [41] El Nemr A, Khaled A, Moneer AA, El Sikaily A. Risk probability due to heavy metals in bivalve from Egyptian Mediterranean coast. The Egyptian J Aquat Res 2012; 38(2): 67-75.
  • [42] Storelli MM, Marcotrigiano GO. Heavy Metal Monitoring in Fish, Bivalve Molluscs, Water. Bull Environ Contam Toxicol 2001; 66: 365-370.
  • [43] Aberkali HB, Trueman ER. Effects of environmental stress on marine bivalve molluscs. Adv Mar Biol 1985; 22: 101-198.
  • [44] Boyden CR. Trace metals content and body size in molluscs. Nat 1974; 251: 311-314.
  • [45] Abbott OJ. The toxicity of ammonium molybdate to marine invertebrates. Mar Poll Bull 1977; 8(9): 204-205.
  • [46] Johannessen OH. Length and weight relationships and the potential production of the bivalve Venerupis pullastra (Montagu) on a sheltered beach in western Norway. Sarsia 1973; 53(1): 41-48.
  • [47] Mol S, Çakalp Z, Çırpıcı E. Su Ürünlerinde İz Element Birikimi ve İnsan Sağlığına Etkileri, Hasad Gıda Dergisi 2005; 244: 1-1.

Details

Primary Language English
Subjects Biology
Journal Section Articles
Authors

Burcu YEŞİLBUDAK> (Primary Author)
ÇUKUROVA ÜNİVERSİTESİ
0000-0002-3627-0024
Türkiye

Publication Date July 26, 2022
Published in Issue Year 2022, Volume 11, Issue 2

Cite

Bibtex @research article { estubtdc1045591, journal = {Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji}, issn = {2667-4203}, address = {btdc@anadolu.edu.tr}, publisher = {Eskisehir Technical University}, year = {2022}, volume = {11}, number = {2}, pages = {39 - 49}, doi = {10.18036/estubtdc.1045591}, title = {SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758)}, key = {cite}, author = {Yeşilbudak, Burcu} }
APA Yeşilbudak, B. (2022). SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758) . Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji , 11 (2) , 39-49 . DOI: 10.18036/estubtdc.1045591
MLA Yeşilbudak, B. "SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758)" . Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11 (2022 ): 39-49 <https://dergipark.org.tr/en/pub/estubtdc/issue/71419/1045591>
Chicago Yeşilbudak, B. "SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758)". Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11 (2022 ): 39-49
RIS TY - JOUR T1 - SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758) AU - BurcuYeşilbudak Y1 - 2022 PY - 2022 N1 - doi: 10.18036/estubtdc.1045591 DO - 10.18036/estubtdc.1045591 T2 - Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji JF - Journal JO - JOR SP - 39 EP - 49 VL - 11 IS - 2 SN - 2667-4203- M3 - doi: 10.18036/estubtdc.1045591 UR - https://doi.org/10.18036/estubtdc.1045591 Y2 - 2022 ER -
EndNote %0 Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758) %A Burcu Yeşilbudak %T SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758) %D 2022 %J Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji %P 2667-4203- %V 11 %N 2 %R doi: 10.18036/estubtdc.1045591 %U 10.18036/estubtdc.1045591
ISNAD Yeşilbudak, Burcu . "SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758)". Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 11 / 2 (July 2022): 39-49 . https://doi.org/10.18036/estubtdc.1045591
AMA Yeşilbudak B. SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758). Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2022; 11(2): 39-49.
Vancouver Yeşilbudak B. SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758). Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2022; 11(2): 39-49.
IEEE B. Yeşilbudak , "SOME MORPHOLOGICAL TRAITS AND HEAVY METAL ACCUMULATION IN MUSCLE TISSUE OF Ruditapes decussatus (Linnaeus, 1758)", Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 11, no. 2, pp. 39-49, Jul. 2022, doi:10.18036/estubtdc.1045591