Yeni Bir İçerik-Tabanlı Akademik Makale Tavsiye Sistemi Prototipi Geliştirilmesi
Year 2021,
Volume: 2 Issue: 2, 6 - 11, 31.05.2021
Veysel Karani Öz
,
Emine Deniz
,
Sinem Bozkurt Keser
,
Yusuf Kartal
,
Savaş Okyay
Abstract
Dijital bilgi ve ziyaretçi sayısındaki hızlı artış, ilgi çekici öğelere erişimde zaman kaybına neden olmaktadır. Aşırı bilgi yükünü hafifletmek için, bilgiyi filtreleme ve önceliklendirme ile verimli bir şekilde sunmak gerekir. Bu durum tavsiye sistemlerinin ortaya çıkmasını ve önem kazanmasını sağlamıştır. Öneriler, kullanıcılara kişiselleştirilmiş ürün veya hizmet sunmak gibi amaçlarla oluşturulur. Tavsiye sistemleri kitap, müzik, film, ticari ürünler ve akademik makale gibi farklı sistem uygulamalarında karşımıza çıkmaktadır. Özellikle akademik alanda dijital bilimsel içeriğin genişlemesi, tavsiye sistemlerinin önemini vurgulamaktadır. Akademik makale tavsiye sistemlerinde, çeşitli yöntemler uygulanmaktadır. Bu çalışmada ise, başlık ve özet bilgileri ile girdi olarak alınan herhangi bir makaleye en benzer makaleleri listeleyen yeni bir içerik-tabanlı akademik tavsiye sistemi prototipi tanıtılmaktadır. Farklı veri işleme yöntemleri ile oluşturulan öneri listeleri kıyaslanarak prototipin başarımı değerlendirilmektedir.
Supporting Institution
Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri
References
- Ruotsalo, Tuukka. (2010). Methods and applications for ontology-based recommender systems.
- Lu, Jie & Wu, Dianshuang & Mao, Mingsong & Wang, Wei & Zhang, Guangquan. (2015). Recommender System Application Developments: A Survey. Decision Support Systems. 74. 10.1016/j.dss.2015.03.008.
- Beel J, Gipp B, Langer S, Breitinger C. Paper recommender systems: a literature survey. International Journal on Digital Libraries 2016; 17 (4): 305-338.
- Ricci F, Rokach L, Shapira B. Introduction to Recommender Systems Handbook. Recommender Systems Handbook; 2011. p. 1-35
- Schafer JB, Frankowski D, Herlocker J, Sen S. Collaborative filtering recommender systems. In: The Adaptive Web; Berlin, Germany; 2007. pp. 291-324.
- X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong and F. Xia, "Scientific Paper Recommendation: A Survey," in IEEE Access, vol. 7, pp. 9324-9339, 2019.
- P. Lops, M. Gemmis, and G. Semeraro, “Content-based recommender systems: State of the art and trends,” Recommender Systems Handbook, pp. 73–105, 2011.
- Liu C. The proximity of co-citation. Scientometrics 2012; 91 (2): 495-511.
- Liu S, Chen C. The effects of co-citation proximity on co-citation analysis. In: 13th International Conference of the International Society for Scientometrics and Informetrics; Durban, South Africa; 2011. pp. 474-484.
- ARXIV. (2020). Retrieved from https://www.kaggle.com/neelshah18/arxivdataset
- Ahmad, Shahbaz & Afzal, Muhammad. (2017). Combining Co-citation and Metadata for Recommending More Related Papers. 218-222.
- Otair, Mohammed. (2013). Comparative Analysis of Arabic Stemming Algorithms. International Journal of Managing Information Technology.
- Porter, M.F.. (2006). An algorithm for suffix stripping. Program. 14. 130-137.
The Development of a Novel Content-Based Academic Paper Recommendation System
Year 2021,
Volume: 2 Issue: 2, 6 - 11, 31.05.2021
Veysel Karani Öz
,
Emine Deniz
,
Sinem Bozkurt Keser
,
Yusuf Kartal
,
Savaş Okyay
Abstract
The rapid increase in digital information and visitors' number causes a waste of time to access attractive items. To alleviate information overload, it is necessary to present information with filtering and prioritization efficiently. This situation has enabled the recommender systems to emerge and gain importance. Suggestions are created to provide users with personalized products or services. Recommendation systems appear in different system applications such as books, music, movies, commercial products, and academic articles. The expansion of digital scientific content emphasizes the importance of recommendation systems, especially in the academic field. Various methods are used in academic article recommendation systems. In this study, a new content-based academic recommendation system prototype is introduced that lists the articles most similar to any given input with title and summary information. The performance of the prototype is evaluated by comparing the suggestion lists created with different data processing methods.
References
- Ruotsalo, Tuukka. (2010). Methods and applications for ontology-based recommender systems.
- Lu, Jie & Wu, Dianshuang & Mao, Mingsong & Wang, Wei & Zhang, Guangquan. (2015). Recommender System Application Developments: A Survey. Decision Support Systems. 74. 10.1016/j.dss.2015.03.008.
- Beel J, Gipp B, Langer S, Breitinger C. Paper recommender systems: a literature survey. International Journal on Digital Libraries 2016; 17 (4): 305-338.
- Ricci F, Rokach L, Shapira B. Introduction to Recommender Systems Handbook. Recommender Systems Handbook; 2011. p. 1-35
- Schafer JB, Frankowski D, Herlocker J, Sen S. Collaborative filtering recommender systems. In: The Adaptive Web; Berlin, Germany; 2007. pp. 291-324.
- X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong and F. Xia, "Scientific Paper Recommendation: A Survey," in IEEE Access, vol. 7, pp. 9324-9339, 2019.
- P. Lops, M. Gemmis, and G. Semeraro, “Content-based recommender systems: State of the art and trends,” Recommender Systems Handbook, pp. 73–105, 2011.
- Liu C. The proximity of co-citation. Scientometrics 2012; 91 (2): 495-511.
- Liu S, Chen C. The effects of co-citation proximity on co-citation analysis. In: 13th International Conference of the International Society for Scientometrics and Informetrics; Durban, South Africa; 2011. pp. 474-484.
- ARXIV. (2020). Retrieved from https://www.kaggle.com/neelshah18/arxivdataset
- Ahmad, Shahbaz & Afzal, Muhammad. (2017). Combining Co-citation and Metadata for Recommending More Related Papers. 218-222.
- Otair, Mohammed. (2013). Comparative Analysis of Arabic Stemming Algorithms. International Journal of Managing Information Technology.
- Porter, M.F.. (2006). An algorithm for suffix stripping. Program. 14. 130-137.