Research Article
BibTex RIS Cite

Çerezlik Karpuz Genotiplerinin ISSR Tekniği ile Moleküler Karakterizasyonu

Year 2023, Volume: 6 Issue: 1, 51 - 58, 31.03.2023
https://doi.org/10.55257/ethabd.1247106

Abstract

Bazı karpuz genotipleri tohum özelliklerinden dolayı çerezlik olarak yetiştirilmekte ve tüketilmektedir. Çerezlik potansiyeli olan genotiplerde ıslah çalışmalarının yapılabilmesi için genetik analizlerin gerçekleştirilmesi gerekmektedir. Bu çalışmada bazı çerezlik karpuz genotiplerinin genetik çeşitlilik ve populasyon yapısının belirlenmesi amaçlanmıştır. ISSR (Inter Simple Sequence Repeat) markır tekniği kullanılarak 24 genotipte 179 bant elde edilmiş ve polimorfizm oranı % 58.2 olarak hesaplanmıştır. Benzerlik katsayı değerlerinin 0.75-0.98 arasında olduğu belirlenmiştir. Kümeleme analizlerinde dört ana küme meydana gelmiştir. Structure analizlerinde genotiplerin iki alt populasyondan oluştuğu tespit edilmiştir. Çerezlik karpuz genotiplerinin ISSR tekniği ile genetik olarak ayırt edilebildiği, ancak genetik varyasyonun düşük olduğu sonucuna varılmıştır. Bu çalışma sonuçları çerezlik karpuz çeşitlerinin iyileştirilmesi için ıslah stratejilerinde kullanılabilir.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi

Project Number

21.GAP.019

Thanks

Bu çalışmayı 21.GAP.019 kodlu proje ile destekleyen Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne teşekkür ederiz.

References

  • Alsohim, A. S., and Motawei, M. I., 2014. Genetic diversity and presence of DREB gene in watermelon cultivars and wild type of watermelon based on molecular markers. Journal of Food, Agriculture and Environment, 12(3-4): 281-284.
  • Aslan, N., Coskun, O. F., Dalda-Sekerci, A., and Gulsen, O., 2021. Moleküler markörler kullanarak çerezlik kabaklarda (Cucurbita pepo L.) saflık düzeylerinin tahmin edilmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26(3): 759-769.
  • Bello, H. S., Ismail, H. Y., Goje, M. H., and Mangga, H. K., 2016. Antimicrobial activity of Citrullus lanatus (watermelon) seeds on some selected bacteria. Journal of Biotechnology Research, 2(6): 39–43.
  • Braide, W., Odiong, I. J., and Oranusi S., 2012. Phytochemical and antibacterial properties of the seed of watermelon (Citrullus lanatus). Prime Journal of Microbiology Research, 2(3): 99-104.
  • Coşkun Ö. F., 2019. Karpuzda verim ve kaliteyi etkileyen bazı karakterleri kontrol eden lokuslarla ilişkili moleküler markırların tespit edilmesi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Kayseri, 483 s.
  • Coşkun, Ö. F., 2022. Determination of genetic diversity in some pumpkin genotypes using SSR marker technique. Erzincan University Journal of Science and Technology, 15(3): 942-952.
  • Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26: 297-302.
  • Dje, Y., Tahi, C.G., Bi, A.I.Z., Baudoin, J.P., and Bertin, P., 2010. Use of ISSR markers to assess genetic diversity of African edible seeded Citrullus lanatus landraces. Scientia Horticulturae, 124:159-164.
  • Earl, D. A., and vonHoldt, B. M., 2012. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359-361.
  • El-Adawy, T. A., and Taha, K. M., 2001. Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. Journal of Agricultural and Food Chemistry, 49(3): 1253-1259.
  • Elias, M.S., 2016. Distinguish among some selective watermelons by using ISSR technology. The Iraqi Journal of Agricultural Sciences, 47(5):1235-1245.
  • Evanno, G., Regnaut, S., and Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2611-2620.
  • FAOSTAT, 2021. http://www.fao.org/faostat/en/#data/QC. Erişim, 02 Ocak 2023.
  • Fukunaga, K., Hill, J., Vigoroux, Y., Matsuoka, Y., Sanchez, G.J., Liu, K., Buckler, E. S., and Doebley, J., 2005. Genetic diversity and population structure of Teosinte. Genetics, 169: 2241-2254.
  • Hu, S. Y., 2005. Food plants of China. Hong Kong (China): The Chinese University of Hong Kong Press, 125 p.
  • Karaman, K., Dalda-Sekerci, A., Yetisir, H., Gulsen, O., and Coskun, O. F., 2018. Molecular, morphological and biochemical characterization of some turkish bitter melon (Momordica charantia L.) genotypes. Journal of Industrial Crops and Products, 123: 93-99.
  • Kausar, T., Hassan, M. T., and Din, G. M., 2020. Utilization of watermelon seed flour as protein supplement in cookies. Pure and Applied Biology, 9(1): 202-206.
  • Kıraç, H., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2022. Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey. Genetic Resources and Crop Evolution, 1-9.
  • Koocheki, A., Razavi, S. M. A., Milani, E., Moghadam, T. M., Abedini, M., Alamatiyan, S., Izadkhah, S., 2007. Physical properties of watermelon seed as a function of moisture content and variety. International Agrophysics, 21: 349-359.
  • Kwon, Y. S., Oh, Y. H., Yi, S. I., Kim, H. Y., An, J. M., Yang, S. Y., Ok, S. H., and Shin, J. S., 2010. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes and Genomics, 32: 115-122.
  • Lakshmi, A. J., and Kaul, P., 2011. Nutritional Potential, Bioaccessibility of Minerals and Functionality of Watermelon Seeds. LWT- Food Science and Technology, 44: 1821 -1826.
  • Levi, A., Thomas, C. E., Wehner, T.C., and Zhang, X., 2001. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. Horticultural Science, 36: 1096-1101.
  • Li, P. F., Huo, X. A., Cheng, Y. Q., Dai, L., Yang, B. Y., and Duan, H. J., 2013. Assessment of genetic divercity in watermelon based on SRAP analysis. Journal of Agricultural Science and Technology, 15(2): 89-96.
  • Maoto, M. M., Beswa, D., Jideani, A. I. O., 2019. Watermelon as a potential fruit snack. International Journal of Food Properties, 22(1): 355–370.
  • Mohammadi, S. A., and Prasanna, B. M., 2003. Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science, 43: 1235-1248.
  • Petchsomrit, A., McDermott, M. I., Chanroj, S., and Choksawangkarn, W., 2020. Watermelon seeds and peels: fatty acid composition and cosmeceutical potential. Oilseeds & Fats Crops and Lipids, 27, 54.
  • Pınar, H., Yahya, H.H., Ercişli, S., Coşkun, Ö.F., Yaman, M., Turgunbaev, K., and Uzun, A., 2021. Molecular Characterization of Barberry Genotypes from Turkey and Kyrgyzstan. Erwerbs-Obstbau, 63, 403-407.
  • Pritchard, J. K., Stephens, M., and Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945-959.
  • Rohlf, J. F., 2000. NTSYS-pc: Numerical Taxonomy And Multivariate Analysis System. Exeter Software, Setauket, New York.
  • Seyed, M. A. R., and Elnaz, M., 2006. Some Physical Properties of Watermelon Seeds. African Journal of Agricultural Research, 1(3):065-069.
  • Soghani, Z. N., Rahimi, M., Nasab, M. A., and Maleki, M., 2018. Grouping and genetic diversity of different watermelon ecotypes based on agro-morphological traits and ISSR marker. Iheringia Série Botânica, 73(1): 53-59.
  • Solmaz, I., and Sari, N., 2009. Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genetic Resources and Crop Evolution, 56: 173-188.
  • Solmaz, I., Sari, N., Aka-Kacar, Y., and Yalcin-Mendi, N. Y., 2010. The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genetic Resources and Crop Evolution, 57: 763-771.
  • Tabiri, B., Agbenorhevi, J. K., Wireko-Manu, F. D., Elsa, I., and Ompouma, E. I., 2016. Watermelon seeds as food: Nutrient composition, phytochemicals and antioxidant activity. International Journal of Nutrition and Food Sciences, 5(2): 139-144.
  • Tak, J., and Jain, S., 2016. Nutrient potential of watermelon (Citrullus lanatus) seeds and its incorporation in product preparation. Food Science Research Journal, 7(2): 202-206.
  • Thongtha, S., Sawai, P., and Srisook, K., 2017. A comparative study on antioxidant and nitric oxide-inducing activity of some watermelon cultivars grown in Thailand. Burapha Science Journal, 22: 14–22.
  • Uluturk, Z. I., Frary, A., and Doganlar, S., 2011. Determination of genetic diversity in water-melon [Citrullus lanatus (Thunb.) Matsum & Nakai] germplasm. Australian Journal of Crop Science, 5: 1832-1836.
  • Yağcıoğlu, M., 2013. Bazı karpuz hatlarında önemli morfolojik karakterlerle ilişkili SRAP markırlarının geliştirilmesi. Erciyes Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, Kayseri, 153 s.
  • Yağcıoğlu, M., Gülşen, O., Solmaz, İ., Yetişir, H., and Sarı, N., 2016. Genetic analyses of Turkish watermelons based on SRAP markers. Turkish Journal of Agriculture and Forestry, 40: 4-15.
  • Zhang, H., Fan, J., Guo, S., Ren, Y., Gong, G., and Zhang, J., 2016. Genetic diversity, population structure, and formation of a core collection of Citrullus accessions. HortScience, 51: 23-29.

Molecular Characterization of Edible Watermelon Genotypes by ISSR Technique

Year 2023, Volume: 6 Issue: 1, 51 - 58, 31.03.2023
https://doi.org/10.55257/ethabd.1247106

Abstract

Some watermelon genotypes are grown and consumed as a edible due to their seed characteristics. Genetic analyzes should be carried out in order to carry out breeding studies in genotypes with edible potential. In this study, it was aimed to determine the genetic diversity and population structure of some edible watermelon genotypes. Using the ISSR (Inter Simple Sequence Repeat) marker technique, 179 bands were obtained in 24 genotypes and the polymorphism rate was calculated as 58.2%. It was determined that the similarity coefficient values were between 0.75-0.98. In the cluster analysis, four main clusters were formed. Structure analysis revealed that genotypes consisted of two subpopulations. It was concluded that the edible watermelon genotypes could be distinguished genetically by the ISSR technique, but the genetic variation was low. The results of this study can be used in breeding strategies for the improvement of the edible watermelon cultivars.

Project Number

21.GAP.019

References

  • Alsohim, A. S., and Motawei, M. I., 2014. Genetic diversity and presence of DREB gene in watermelon cultivars and wild type of watermelon based on molecular markers. Journal of Food, Agriculture and Environment, 12(3-4): 281-284.
  • Aslan, N., Coskun, O. F., Dalda-Sekerci, A., and Gulsen, O., 2021. Moleküler markörler kullanarak çerezlik kabaklarda (Cucurbita pepo L.) saflık düzeylerinin tahmin edilmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26(3): 759-769.
  • Bello, H. S., Ismail, H. Y., Goje, M. H., and Mangga, H. K., 2016. Antimicrobial activity of Citrullus lanatus (watermelon) seeds on some selected bacteria. Journal of Biotechnology Research, 2(6): 39–43.
  • Braide, W., Odiong, I. J., and Oranusi S., 2012. Phytochemical and antibacterial properties of the seed of watermelon (Citrullus lanatus). Prime Journal of Microbiology Research, 2(3): 99-104.
  • Coşkun Ö. F., 2019. Karpuzda verim ve kaliteyi etkileyen bazı karakterleri kontrol eden lokuslarla ilişkili moleküler markırların tespit edilmesi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Kayseri, 483 s.
  • Coşkun, Ö. F., 2022. Determination of genetic diversity in some pumpkin genotypes using SSR marker technique. Erzincan University Journal of Science and Technology, 15(3): 942-952.
  • Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26: 297-302.
  • Dje, Y., Tahi, C.G., Bi, A.I.Z., Baudoin, J.P., and Bertin, P., 2010. Use of ISSR markers to assess genetic diversity of African edible seeded Citrullus lanatus landraces. Scientia Horticulturae, 124:159-164.
  • Earl, D. A., and vonHoldt, B. M., 2012. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359-361.
  • El-Adawy, T. A., and Taha, K. M., 2001. Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. Journal of Agricultural and Food Chemistry, 49(3): 1253-1259.
  • Elias, M.S., 2016. Distinguish among some selective watermelons by using ISSR technology. The Iraqi Journal of Agricultural Sciences, 47(5):1235-1245.
  • Evanno, G., Regnaut, S., and Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2611-2620.
  • FAOSTAT, 2021. http://www.fao.org/faostat/en/#data/QC. Erişim, 02 Ocak 2023.
  • Fukunaga, K., Hill, J., Vigoroux, Y., Matsuoka, Y., Sanchez, G.J., Liu, K., Buckler, E. S., and Doebley, J., 2005. Genetic diversity and population structure of Teosinte. Genetics, 169: 2241-2254.
  • Hu, S. Y., 2005. Food plants of China. Hong Kong (China): The Chinese University of Hong Kong Press, 125 p.
  • Karaman, K., Dalda-Sekerci, A., Yetisir, H., Gulsen, O., and Coskun, O. F., 2018. Molecular, morphological and biochemical characterization of some turkish bitter melon (Momordica charantia L.) genotypes. Journal of Industrial Crops and Products, 123: 93-99.
  • Kausar, T., Hassan, M. T., and Din, G. M., 2020. Utilization of watermelon seed flour as protein supplement in cookies. Pure and Applied Biology, 9(1): 202-206.
  • Kıraç, H., Dalda-Sekerci, A., Coskun, O. F., and Gulsen, O., 2022. Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey. Genetic Resources and Crop Evolution, 1-9.
  • Koocheki, A., Razavi, S. M. A., Milani, E., Moghadam, T. M., Abedini, M., Alamatiyan, S., Izadkhah, S., 2007. Physical properties of watermelon seed as a function of moisture content and variety. International Agrophysics, 21: 349-359.
  • Kwon, Y. S., Oh, Y. H., Yi, S. I., Kim, H. Y., An, J. M., Yang, S. Y., Ok, S. H., and Shin, J. S., 2010. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes and Genomics, 32: 115-122.
  • Lakshmi, A. J., and Kaul, P., 2011. Nutritional Potential, Bioaccessibility of Minerals and Functionality of Watermelon Seeds. LWT- Food Science and Technology, 44: 1821 -1826.
  • Levi, A., Thomas, C. E., Wehner, T.C., and Zhang, X., 2001. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. Horticultural Science, 36: 1096-1101.
  • Li, P. F., Huo, X. A., Cheng, Y. Q., Dai, L., Yang, B. Y., and Duan, H. J., 2013. Assessment of genetic divercity in watermelon based on SRAP analysis. Journal of Agricultural Science and Technology, 15(2): 89-96.
  • Maoto, M. M., Beswa, D., Jideani, A. I. O., 2019. Watermelon as a potential fruit snack. International Journal of Food Properties, 22(1): 355–370.
  • Mohammadi, S. A., and Prasanna, B. M., 2003. Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science, 43: 1235-1248.
  • Petchsomrit, A., McDermott, M. I., Chanroj, S., and Choksawangkarn, W., 2020. Watermelon seeds and peels: fatty acid composition and cosmeceutical potential. Oilseeds & Fats Crops and Lipids, 27, 54.
  • Pınar, H., Yahya, H.H., Ercişli, S., Coşkun, Ö.F., Yaman, M., Turgunbaev, K., and Uzun, A., 2021. Molecular Characterization of Barberry Genotypes from Turkey and Kyrgyzstan. Erwerbs-Obstbau, 63, 403-407.
  • Pritchard, J. K., Stephens, M., and Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945-959.
  • Rohlf, J. F., 2000. NTSYS-pc: Numerical Taxonomy And Multivariate Analysis System. Exeter Software, Setauket, New York.
  • Seyed, M. A. R., and Elnaz, M., 2006. Some Physical Properties of Watermelon Seeds. African Journal of Agricultural Research, 1(3):065-069.
  • Soghani, Z. N., Rahimi, M., Nasab, M. A., and Maleki, M., 2018. Grouping and genetic diversity of different watermelon ecotypes based on agro-morphological traits and ISSR marker. Iheringia Série Botânica, 73(1): 53-59.
  • Solmaz, I., and Sari, N., 2009. Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genetic Resources and Crop Evolution, 56: 173-188.
  • Solmaz, I., Sari, N., Aka-Kacar, Y., and Yalcin-Mendi, N. Y., 2010. The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genetic Resources and Crop Evolution, 57: 763-771.
  • Tabiri, B., Agbenorhevi, J. K., Wireko-Manu, F. D., Elsa, I., and Ompouma, E. I., 2016. Watermelon seeds as food: Nutrient composition, phytochemicals and antioxidant activity. International Journal of Nutrition and Food Sciences, 5(2): 139-144.
  • Tak, J., and Jain, S., 2016. Nutrient potential of watermelon (Citrullus lanatus) seeds and its incorporation in product preparation. Food Science Research Journal, 7(2): 202-206.
  • Thongtha, S., Sawai, P., and Srisook, K., 2017. A comparative study on antioxidant and nitric oxide-inducing activity of some watermelon cultivars grown in Thailand. Burapha Science Journal, 22: 14–22.
  • Uluturk, Z. I., Frary, A., and Doganlar, S., 2011. Determination of genetic diversity in water-melon [Citrullus lanatus (Thunb.) Matsum & Nakai] germplasm. Australian Journal of Crop Science, 5: 1832-1836.
  • Yağcıoğlu, M., 2013. Bazı karpuz hatlarında önemli morfolojik karakterlerle ilişkili SRAP markırlarının geliştirilmesi. Erciyes Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, Kayseri, 153 s.
  • Yağcıoğlu, M., Gülşen, O., Solmaz, İ., Yetişir, H., and Sarı, N., 2016. Genetic analyses of Turkish watermelons based on SRAP markers. Turkish Journal of Agriculture and Forestry, 40: 4-15.
  • Zhang, H., Fan, J., Guo, S., Ren, Y., Gong, G., and Zhang, J., 2016. Genetic diversity, population structure, and formation of a core collection of Citrullus accessions. HortScience, 51: 23-29.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Seher Toprak 0000-0002-3459-9846

Ömer Faruk Coşkun 0000-0001-5398-5737

Kazım Mavi 0000-0003-0195-8539

Project Number 21.GAP.019
Early Pub Date January 18, 2023
Publication Date March 31, 2023
Acceptance Date February 21, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Toprak, S., Coşkun, Ö. F., & Mavi, K. (2023). Çerezlik Karpuz Genotiplerinin ISSR Tekniği ile Moleküler Karakterizasyonu. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 6(1), 51-58. https://doi.org/10.55257/ethabd.1247106