Year 2019, Volume 9 , Issue 1, Pages 251 - 275 2019-01-31

DEVELOPED SOFTWARE AND USED PLATFORMS IN VIRTUAL REALITY APPLICATIONS IN EDUCATION FIELD
EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK

Mehmet BÜTÜN [1] , Veli Özcan BUDAK [2] , Murat SELÇUK [3] , İlkim Ecem EMRE [4] , İrfan ŞİMŞEK [5]


Along with the rapid developments in virtual reality (VR) technology, the number of platforms that enable application development in this area has also increased. The diversity of devices and application development platforms brings accessibility and compatibility issues to the forefront. Nowadays, developed SG applications for education, which devices they are compatible with and from which platforms they are accessible in terms of the virtual application store has become an important research topic. The studies in Scopus and ERIC, published between years 2014-2018 and using VR applications developed for education, were analyzed with a systematic review. Studies were analyzed according to the platforms they have developed, the language of the software used, the supported operating system, and the virtual stores that can be accessed. It was found that in 29 of the studies used VR applications that were developed previously, in 7 studies no information is given about used VR applications, and in 28 studies VR applications were developed. In a significant part of the studies, it was found that VR applications were not developed to be supported by more than one device or operating system, there were ambiguities about accessibility to virtual application stores and different software languages were preferred. As a result of the evaluations, it can be said that accessibility and compatibility problems have found in a significant part of the studies. As a result, it is recommended that VR applications to be used in the field of education to be developed as platform-independent and  compatible with mobile devices to work in different operating systems and devices.

Sanal gerçeklik (SG) teknolojilerinde yaşanan hızlı gelişmelerle birlikte, bu alanda uygulama geliştirmeye olanak tanıyan platformların sayısı da artış göstermiştir. Cihazların ve uygulama geliştirme platformlarının çeşitlilik kazanması, erişilebilirlik ve uyumluluk sorunlarını gündeme getirmektedir. Günümüzde eğitim için geliştirilen SG uygulamalarının; hangi cihazlarla uyumlu oldukları ve dağıtıldıkları sanal uygulama mağazası açısından hangi platformlar üzerinde erişilebilir oldukları önemli bir araştırma konusu haline gelmiştir.  Scopus ve ERIC üzerinde yer alan, 2014-2018 yıllarında yayımlanmış, eğitim için geliştirilen SG uygulamalarının kullanıldığı çalışmalar sistematik derleme ile analiz edilmiştir. İncelenen makaleler; geliştirildikleri platformlar, kullanılan yazılım dilleri, desteklenen işletim sistemi ve erişilebilecekleri sanal mağazalar açısından değerlendirilmiştir. Çalışmaların 29’unda daha önce geliştirilmiş SG uygulamalarının kullanıldığı, 7’sinde kullanılan SG uygulamalarına dair bilgi verilmediği, 28 çalışmada ise SG uygulamaları geliştirildiği görülmüştür. Çalışmaların önemli bir bölümünde, SG uygulamalarının birden fazla cihaz ya da işletim sistemi tarafından desteklenecek şekilde geliştirilmediği, sanal uygulama mağazaları üzerinde erişime açılması konusunda belirsizliğin olduğu, yazılım dili olarak ise farklı dillerin tercih edildiği görülmüştür. Yapılan değerlendirmeler neticesinde çalışmaların önemli bir bölümünde yaygın etki açısından erişilebilirlik ve uyumluluk sorunları olduğu söylenebilir. Sonuç olarak, eğitim alanında kullanılacak SG uygulamalarının farklı işletim sistemlerinde ve cihazlarda çalışacak şekilde platformdan bağımsız ve mobil cihazlarla uyumlu şekilde geliştirilmesi önerilmektedir.

  • Alhalabi, W. S. (2016). Virtual reality systems enhance students’ achievements in engineering education. Behaviour and Information Technology, 35(11), 919-925. https://doi.org/10.1080/0144929X.2016.1212931
  • Anderson, P., Ma, M., & Poyade, M. (2014). A Haptic-Based Virtual Reality Head and Neck Model for Dental Education. Içinde M. Ma, L. C. Jain, & P. Anderson (Ed.), Virtual, Augmented Reality and Serious Games for Healthcare 1 (C. 68, ss. 29-50). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54816-1_3
  • Avrupa Komisyonu. (2005). eAccessibility: An Information Society Open to All. Geliş tarihi 31 Temmuz 2018, gönderen http://ec.europa.eu/information_society/doc/factsheets/012-eaccessibility.pdf
  • Barata, P. N. A., Filho, M. R., & Nunes, M. V. A. (2015). Consolidating learning in power systems: Virtual reality applied to the study of the operation of electric power transformers. IEEE Transactions on Education, 58(4), 255-261. https://doi.org/10.1109/TE.2015.2393842
  • Bassil, A., Rubod, C., Borghesi, Y., Kerbage, Y., Schreiber, E. S., Azaïs, H., & Garabedian, C. (2017). Operative and diagnostic hysteroscopy: A novel learning model combining new animal models and virtual reality simulation. European Journal of Obstetrics & Gynecology and Reproductive Biology, 211, 42-47. https://doi.org/10.1016/j.ejogrb.2017.01.058
  • Burkhardt, J.-M., Corneloup, V., Garbay, C., Bourrier, Y., Jambon, F., Luengo, V., … Lourdeaux, D. (2016). Simulation and virtual reality-based learning of non-technical skills in driving: critical situations, diagnostic and adaptation. IFAC-PapersOnLine, 49(32), 66-71. https://doi.org/10.1016/j.ifacol.2016.12.191
  • Buttussi, F., & Chittaro, L. (2018). Effects of Different Types of Virtual Reality Display on Presence and Learning in a Safety Training Scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063-1076. https://doi.org/10.1109/TVCG.2017.2653117
  • Carbonell-Carrera, C., & Saorín, J. L. (2017). Geospatial Google Street View with virtual reality: Amotivational approach for spatial training education. ISPRS International Journal of Geo-Information, 6(9). https://doi.org/10.3390/ijgi6090261
  • Chang, X.-Q., Zhang, D.-H., & Jin, X.-X. (2016). Application of virtual reality technology in distance learning. International Journal of Emerging Technologies in Learning, 11(11), 76-79. https://doi.org/10.3991/ijet.v11i11.6257
  • Chen, C. J., Lau, S. Y., & Teh, C. S. (2015). A feasible group testing framework for producing usable virtual reality learning applications. Virtual Reality, 19(2), 129-144. https://doi.org/10.1007/s10055-015-0263-7
  • Chen, Y.-L. (2016). The Effects of Virtual Reality Learning Environment on Student Cognitive and Linguistic Development. Asia-Pacific Education Researcher, 25(4), 637-646. https://doi.org/10.1007/s40299-016-0293-2
  • Cho, D., Ham, J., Oh, J., Park, J., Kim, S., Lee, N.-K., & Lee, B. (2017). Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sensors (Switzerland), 17(10). https://doi.org/10.3390/s17102435
  • Choi, K.-S., He, X., Chiang, V. C.-L., & Deng, Z. (2015). A virtual reality based simulator for learning nasogastric tube placement. Computers in Biology and Medicine, 57(Supplement C), 103-115. https://doi.org/10.1016/j.compbiomed.2014.12.006
  • Cimadevilla, J. M., Roldán, L., París, M., Arnedo, M., & Roldán, S. (2014). Spatial learning in a virtual reality-based task is altered in very preterm children. Journal of Clinical and Experimental Neuropsychology, 36(9), 1002-1008. https://doi.org/10.1080/13803395.2014.963520
  • Davis, R. L., & Weisbeck, C. (2015). Search strategies used by older adults in a virtual reality place learning task. Gerontologist, 55, S118-S127. https://doi.org/10.1093/geront/gnv020
  • de Faria, J. W. V., Teixeira, M. J., Júnior, L. de M. S., Otoch, J. P., & Figueiredo, E. G. (2016). Virtual and stereoscopic anatomy: When virtual reality meets medical education. Journal of Neurosurgery, 125(5), 1105-1111. https://doi.org/10.3171/2015.8.JNS141563
  • de la Torre-Luque, A., Valero-Aguayo, L., & de la Rubia-Cuestas, E. J. (2017). Visuospatial Orientation Learning through Virtual Reality for People with Severe Disability. International Journal of Disability, Development and Education, 64(4), 420-435. https://doi.org/10.1080/1034912X.2016.1274022
  • de Mello Monteiro, C. B., da Silva, T. D., de Abreu, L. C., Fregni, F., de Araujo, L. V., Ferreira, F. H. I. B., & Leone, C. (2017). Short-term motor learning through non-immersive virtual reality task in individuals with down syndrome. BMC Neurology, 17(1). https://doi.org/10.1186/s12883-017-0852-z
  • Dubovi, I., Levy, S. T., & Dagan, E. (2017). Now I know how! The learning process of medication administration among nursing students with non-immersive desktop virtual reality simulation. Computers & Education, 113, 16-27. https://doi.org/10.1016/j.compedu.2017.05.009
  • Fajnerová, I., Rodriguez, M., Levcík, D., Konrádová, L., Mikoláš, P., Brom, C., … Horácek, J. (2014). A virtual reality task based on animal research – spatial learning and memory in patients after the first episode of schizophrenia. Frontiers in Behavioral Neuroscience, 8, 1-15. https://doi.org/10.3389/fnbeh.2014.00157
  • Fiard, G., Selmi, S.-Y., Promayon, E., Vadcard, L., Descotes, J.-L., & Troccaz, J. (2014). Initial Validation of a Virtual-Reality Learning Environment for Prostate Biopsies: Realism Matters! Journal of Endourology, 28(4), 453-458. https://doi.org/10.1089/end.2013.0454
  • Gong, X., Liu, Y., Jiao, Y., Wang, B., Zhou, J., & Yu, H. (2015). A novel earthquake education system based on virtual reality. IEICE Transactions on Information and Systems, E98D(12), 2242-2249. https://doi.org/10.1587/transinf.2015EDP7165
  • Hsu, K.-S., Jiang, J.-F., Wei, H.-Y., & Lee, T.-H. (2016). Application of the environmental sensation learning vehicle simulation platform in virtual reality. Eurasia Journal of Mathematics, Science and Technology Education, 12(5), 1477-1485. https://doi.org/10.12973/eurasia.2016.1525a
  • Huang, H.-M., Liaw, S.-S., & Lai, C.-M. (2016). Exploring learner acceptance of the use of virtual reality in medical education: a case study of desktop and projection-based display systems. Interactive Learning Environments, 24(1), 3-19. https://doi.org/10.1080/10494820.2013.817436
  • Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers & Education, 106(Supplement C), 150-165. https://doi.org/10.1016/j.compedu.2016.12.009
  • Jimeno-Morenilla, A., Sánchez-Romero, J. L., Mora-Mora, H., & Coll-Miralles, R. (2016). Using virtual reality for industrial design learning: a methodological proposal. Behaviour and Information Technology, 35(11), 897-906. https://doi.org/10.1080/0144929X.2016.1215525
  • Kim, P. W., Shin, Y. S., Ha, B. H., & Anisetti, M. (2017). Effects of avatar character performances in virtual reality dramas used for teachers’ education. Behaviour & Information Technology, 36(7), 699-712. https://doi.org/10.1080/0144929X.2016.1275809
  • Lau, Kung Wong, Kan, C. W., & Lee, P. Y. (2017). Doing textiles experiments in game-based virtual reality: A design of the Stereoscopic Chemical Laboratory (SCL) for textiles education. International Journal of Information and Learning Technology, 34(3), 242-258. https://doi.org/10.1108/IJILT-05-2016-0016
  • Lau, K.W. (2015). Organizational learning goes virtual?: A study of employees’ learning achievement in stereoscopic 3D virtual reality. Learning Organization, 22(5), 289-303. https://doi.org/10.1108/TLO-11-2014-0063
  • Le, Q. T., Pedro, A., & Park, C. S. (2015). A Social Virtual Reality Based Construction Safety Education System for Experiential Learning. Journal of Intelligent and Robotic Systems: Theory and Applications, 79(3-4), 487-506. https://doi.org/10.1007/s10846-014-0112-z
  • Lee, E. A.-L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58. https://doi.org/10.1016/j.compedu.2014.07.010
  • Lee, G. I., & Lee, M. R. (2018). Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads. Surgical Endoscopy, 32(1), 62-72. https://doi.org/10.1007/s00464-017-5634-6
  • Levac, D. E., Glegg, S. M. N., Sveistrup, H., Colquhoun, H., Miller, P., Finestone, H., … Velikonja, D. (2016). Promoting therapists’ use of motor learning strategies within virtual reality-based stroke rehabilitation. PLoS ONE, 11(12). https://doi.org/10.1371/journal.pone.0168311
  • Lin, M. T.-Y., Wang, J.-S., Kuo, H.-M., & Luo, Y. (2017). A study on the effect of virtual reality 3D exploratory education on students’ creativity and leadership. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3151-3161. https://doi.org/10.12973/eurasia.2017.00709a
  • Liou, H.-H., Yang, S. J. H., Chen, S. Y., & Tarng, W. (2017). The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning. Educational Technology & Society, 20(3), 110-121.
  • Lv, Z., Li, X., & Li, W. (2017). Virtual reality geographical interactive scene semantics research for immersive geography learning. Neurocomputing, 254(Supplement C), 71-78. https://doi.org/10.1016/j.neucom.2016.07.078
  • Madrigal, E., Prajapati, S., & Hernandez-Prera, J. C. (2016). Introducing a virtual reality experience in anatomic pathology education. American Journal of Clinical Pathology, 146(4), 462-468. https://doi.org/10.1093/ajcp/aqw133
  • Madsen, M. E., Konge, L., Nørgaard, L. N., Tabor, A., Ringsted, C., Klemmensen, å. K., … Tolsgaard, M. G. (2014). Assessment of performance measures and learning curves for use of a virtual-reality ultrasound simulator in transvaginal ultrasound examination. Ultrasound in Obstetrics & Gynecology, 44(6), 693-699. https://doi.org/10.1002/uog.13400
  • Marusak, H. A., Peters, C. A., Hehr, A., Elrahal, F., & Rabinak, C. A. (2017). A novel paradigm to study interpersonal threat-related learning and extinction in children using virtual reality. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-17131-5
  • Middleton, R. M., Alvand, A., Garfjeld Roberts, P., Hargrove, C., Kirby, G., & Rees, J. L. (2017). Simulation-Based Training Platforms for Arthroscopy: A Randomized Comparison of Virtual Reality Learning to Benchtop Learning. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 33(5), 996-1003. https://doi.org/10.1016/j.arthro.2016.10.021
  • Moro, C., Štromberga, Z., & Stirling, A. (2017). Virtualisation devices for student learning: Comparison between desktop-based (Oculus Rift) and mobile-based (Gear VR) virtual reality in medical and health science education. Australasian Journal of Educational Technology, 33(6), 1-10. https://doi.org/10.14742/ajet.3840
  • Nickel, F., Brzoska, J. A., Gondan, M., Rangnick, H. M., Chu, J., Kenngott, H. G., … Müller-Stich, B. P. (2015). Virtual reality training versus blended learning of laparoscopic cholecystectomy: a randomized controlled trial with laparoscopic novices. Medicine, 94(20), e764. https://doi.org/10.1097/MD.0000000000000764
  • Orman, E. K., Price, H. E., & Russell, C. R. (2017). Feasibility of Using an Augmented Immersive Virtual Reality Learning Environment to Enhance Music Conducting Skills. Journal of Music Teacher Education, 27(1), 24-35. https://doi.org/10.1177/1057083717697962
  • Parsons, S. (2015). Learning to work together: Designing a multi-user virtual reality game for social collaboration and perspective-taking for children with autism. International Journal of Child-Computer Interaction, 6(Supplement C), 28-38. https://doi.org/10.1016/j.ijcci.2015.12.002
  • Pedro, A., Le, Q. T., & Park, C. S. (2016). Framework for Integrating Safety into Construction Methods Education through Interactive Virtual Reality. Journal of Professional Issues in Engineering Education and Practice, 142(2). https://doi.org/10.1061/(ASCE)EI.1943-5541.0000261
  • Rahm, S., Wieser, K., Wicki, I., Holenstein, L., Fucentese, S. F., & Gerber, C. (2016). Performance of medical students on a virtual reality simulator for knee arthroscopy: An analysis of learning curves and predictors of performance. BMC Surgery, 16(1). https://doi.org/10.1186/s12893-016-0129-2
  • Ramachandiran, C. R., Jomhari, N., Thiyagaraja, S., & Maria, M. (2015). Virtual Reality Based Behavioural Learning for Autistic Children. Electronic Journal of E-Learning, 13(5), 357-365.
  • Repetto, C., Colombo, B., & Riva, G. (2015). Is Motor Simulation Involved During Foreign Language Learning? A Virtual Reality Experiment. SAGE Open, 5(4). https://doi.org/10.1177/2158244015609964
  • Rohidatun, M. W., Faieza, A. A., Rosnah, M. Y., Nor Hayati, S., & Rahinah, I. (2016). Development of virtual reality (VR) system with haptic controller and augmented reality (AR) system to enhance learning and training experience. International Journal of Applied Engineering Research, 11(16), 8806-8809.
  • Rovira, A., & Slater, M. (2017). Reinforcement Learning as a tool to make people move to a specific location in Immersive Virtual Reality. International Journal of Human-Computer Studies, 98(Supplement C), 89-94. https://doi.org/10.1016/j.ijhcs.2016.10.007
  • Smith, S. J., Farra, S., Ulrich, D. L., Hodgson, E., Nicely, S., & Matcham, W. (2016). Learning and Retention Using Virtual Reality in a Decontamination Simulation. Nursing Education Perspectives, 37(4), 210-214. https://doi.org/10.1097/01.NEP.0000000000000035
  • Statista. (2018). Global mobile OS market share in sales to end users from 1st quarter 2009 to 1st quarter 2018. Geliş tarihi gönderen https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
  • Sun, G., Chen, W., Li, H., Sun, Q., Kyan, M., Muneesawang, & Zhang, P. (2017). A virtual reality dance self-learning framework using Laban movement analysis. Journal of Engineering Science and Technology Review, 10(5), 25-32. https://doi.org/10.25103/jestr.105.03
  • Tiffany, J. M., & Hoglund, B. A. (2014). Facilitating Learning Through Virtual Reality Simulation: Welcome to Nightingale Isle. Içinde Virtual, Augmented Reality and Serious Games for Healthcare 1 (ss. 159-174). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54816-1_9
  • Tremblay, L., Chebbi, B., Bouchard, S., Cimon-Lambert, K., & Carmichael, J. (2014). Learning disabilities and visual-motor skills; comparing assessment from a hapto-virtual reality tool and Bender-Gestalt test. Virtual Reality, 18(1), 49-60. https://doi.org/10.1007/s10055-014-0242-4
  • Tretsiakova-McNally, S., Maranne, E., Verbecke, F., & Molkov, V. (2017). Mixed e-learning and virtual reality pedagogical approach for innovative hydrogen safety training of first responders. International Journal of Hydrogen Energy, 42(11), 7504-7512. https://doi.org/10.1016/j.ijhydene.2016.03.175
  • Vélaz, Y., Rodríguez Arce, J., Gutiérrez, T., Lozano-Rodero, A., & Suescun, A. (2017). The Influence of Interaction Technology on the Learning of Assembly Tasks Using Virtual Reality. Journal of Computing and Information Science in Engineering, 14(4), 041007-1/041007-9. https://doi.org/10.1115/1.4028588
  • Vieira, C. B., Seshadri, V., Oliveira, R. A. R., Reinhardt, P., Calazans, P. M. P., & Vieira Filho, J. B. (2017). Applying virtual reality model to green ironmaking industry and education: ‘a case study of charcoal mini-blast furnace plant’. Mineral Processing and Extractive Metallurgy, 126(1-2), 116-123. https://doi.org/10.1080/03719553.2016.1278516
  • Wan, W. A. J., & Awaatif, A. (2017). Virtual Reality Courseware Towards Achievement of Transfer Learning Among Students with Different Spatial Ability. Journal of Telecommunication, Electronic and Computer Engineering, 9(2-11), 51-54.
  • Wang, Y.-S., Sun, J., & Liu, L. (2017). Effects of applying virtual reality to adventure athletic education on students’ self-efficacy and team cohesiveness. Journal of Interdisciplinary Mathematics, 20(3), 895-908. https://doi.org/10.1080/09720502.2017.1358889
  • Wang, Z., Ni, Y., Zhang, Y., Jin, X., Xia, Q., & Wang, H. (2014). Laparoscopic Varicocelectomy: Virtual Reality Training and Learning Curve. JSLS : Journal of the Society of Laparoendoscopic Surgeons, 18(3), e2014.00258. https://doi.org/10.4293/JSLS.2014.00258
  • Wong, C. W., Olafsson, V., Plank, M., Snider, J., Halgren, E., Poizner, H., & Liu, T. T. (2014). Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0109622
  • Xu, X., & Ke, F. (2016). Designing a Virtual-Reality-Based, Gamelike Math Learning Environment. American Journal of Distance Education, 30(1), 27-38. https://doi.org/10.1080/08923647.2016.1119621
  • Yeh, S.-C., Huang, M.-C., Wang, P.-C., Fang, T.-Y., Su, M.-C., Tsai, P.-Y., & Rizzo, A. (2014). Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system. Computer Methods and Programs in Biomedicine, 116(3), 311-318. https://doi.org/10.1016/j.cmpb.2014.04.014
Primary Language tr
Subjects Social
Journal Section Articles
Authors

Orcid: 0000-0002-3138-7661
Author: Mehmet BÜTÜN (Primary Author)
Institution: İstanbul Üniversitesi
Country: Turkey


Orcid: 0000-0002-0960-0542
Author: Veli Özcan BUDAK
Institution: KIRKLARELİ ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-6386-0142
Author: Murat SELÇUK
Institution: İstanbul Üniversitesi
Country: Turkey


Orcid: 0000-0001-9507-8967
Author: İlkim Ecem EMRE
Institution: MARMARA ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-7481-5830
Author: İrfan ŞİMŞEK
Institution: İstanbul Üniversitesi
Country: Turkey


Dates

Publication Date : January 31, 2019

Bibtex @review { etku454758, journal = {Eğitim Teknolojisi Kuram ve Uygulama}, issn = {2147-1908}, address = {}, publisher = {Gazi University}, year = {2019}, volume = {9}, pages = {251 - 275}, doi = {10.17943/etku.454758}, title = {EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK}, key = {cite}, author = {BÜTÜN, Mehmet and BUDAK, Veli Özcan and SELÇUK, Murat and EMRE, İlkim Ecem and ŞİMŞEK, İrfan} }
APA BÜTÜN, M , BUDAK, V , SELÇUK, M , EMRE, İ , ŞİMŞEK, İ . (2019). EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK. Eğitim Teknolojisi Kuram ve Uygulama , 9 (1) , 251-275 . DOI: 10.17943/etku.454758
MLA BÜTÜN, M , BUDAK, V , SELÇUK, M , EMRE, İ , ŞİMŞEK, İ . "EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK". Eğitim Teknolojisi Kuram ve Uygulama 9 (2019 ): 251-275 <https://dergipark.org.tr/en/pub/etku/issue/43109/454758>
Chicago BÜTÜN, M , BUDAK, V , SELÇUK, M , EMRE, İ , ŞİMŞEK, İ . "EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK". Eğitim Teknolojisi Kuram ve Uygulama 9 (2019 ): 251-275
RIS TY - JOUR T1 - EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK AU - Mehmet BÜTÜN , Veli Özcan BUDAK , Murat SELÇUK , İlkim Ecem EMRE , İrfan ŞİMŞEK Y1 - 2019 PY - 2019 N1 - doi: 10.17943/etku.454758 DO - 10.17943/etku.454758 T2 - Eğitim Teknolojisi Kuram ve Uygulama JF - Journal JO - JOR SP - 251 EP - 275 VL - 9 IS - 1 SN - 2147-1908- M3 - doi: 10.17943/etku.454758 UR - https://doi.org/10.17943/etku.454758 Y2 - 2019 ER -
EndNote %0 Eğitim Teknolojisi Kuram ve Uygulama EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK %A Mehmet BÜTÜN , Veli Özcan BUDAK , Murat SELÇUK , İlkim Ecem EMRE , İrfan ŞİMŞEK %T EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK %D 2019 %J Eğitim Teknolojisi Kuram ve Uygulama %P 2147-1908- %V 9 %N 1 %R doi: 10.17943/etku.454758 %U 10.17943/etku.454758
ISNAD BÜTÜN, Mehmet , BUDAK, Veli Özcan , SELÇUK, Murat , EMRE, İlkim Ecem , ŞİMŞEK, İrfan . "EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK". Eğitim Teknolojisi Kuram ve Uygulama 9 / 1 (January 2019): 251-275 . https://doi.org/10.17943/etku.454758
AMA BÜTÜN M , BUDAK V , SELÇUK M , EMRE İ , ŞİMŞEK İ . EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK. Eğitim Teknolojisi Kuram ve Uygulama (ETKU). 2019; 9(1): 251-275.
Vancouver BÜTÜN M , BUDAK V , SELÇUK M , EMRE İ , ŞİMŞEK İ . EĞİTİMDE SANAL GERÇEKLİK UYGULAMALARINDA ERİŞİLEBİLİRLİK VE UYUMLULUK. Eğitim Teknolojisi Kuram ve Uygulama. 2019; 9(1): 275-251.