The Dual Effects of Vitamins and Metals: A Review on Health, Mutagenicity, and Antimutagenicity
Year 2024,
Volume: 4 Issue: 2, 73 - 91, 03.10.2024
Eda Delik
,
Burcu Emine Tefon Öztürk
,
Bülent Kaya
Abstract
Heavy metals and vitamins are substances that have significant impacts on human health. While exposure to heavy metals from environmental and industrial sources leads to toxic effects, vitamins are generally recognised as essential components that support body functions. However, depending on the dose, both groups can be harmful or beneficial to human health. One thing they have in common is that they are both required in trace amounts by the human body. Both heavy metals and vitamins are substances that generally need to be taken into the body from external sources for the metabolism to function properly. This review addresses the toxic and antitoxic effects of heavy metals and vitamins. It also examines the effects of these substances on human health depending on the dose, emphasising both their harmful and beneficial aspects. Important metals and groups of vitamins for health are discussed, emphasizing that high doses can potentially lead to toxicity. As a result, this review presents significant findings to help individuals develop strategies to protect their health and health professionals to manage exposure risks effectively.
References
- [1] J. Morales-Gutierrez, S. Díaz-Cortés, M.A. Montoya-Giraldo and A.F. Zuluaga, “Toxicity induced by multiple high doses of vitamin B12 during pernicious anaemia treatment: a case report.” Clinical Toxicology, vol. 58, no. 2, pp. 129-131, 2020.
- [2] S. Matsumoto, X. Fang, M.G. Traber, K. D. Jones, C. Langelier, P. Hayakawa Serpa, et al., “Dose-dependent pulmonary toxicity of aerosolized vitamin E acetate.” American Journal of Respiratory Cell and Molecular Biology, vol. 63, no. 6, pp. 748-757, 2020.
- [3] S. Yokota, T. Shirahata, J. Yusa, Y. Sakurai, H. Ito and S. Oshio, “Long-term dietary intake of excessive vitamin A impairs spermatogenesis in mice.” The Journal of Toxicological Sciences, vol. 44, no. 4, pp. 257-271, 2019.
- [4] Z. Huang, A.H. Rose and P.R. Hoffmann, “The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities” Antioxidants and Redox Signaling, vol. 16, no. 7, pp. 705-743, 2012.
- [5] S. Dasharathy, S. Arjunan, A. Maliyur Basavaraju, V. Murugasen, S. Ramachandran, R. Keshav and R. Murugan, “Mutagenic, carcinogenic, and teratogenic effect of heavy metals.” Evidence-Based Complementary and Alternative Medicine, vol. 2022, no. 1, pp. 8011953, 2022.
- [6] B. Kaya, A. Creus, A. Velázquez, A. Yanikoǧlu and R. Marcos, “Genotoxicity is modulated by ascorbic acid: studies using the wing spot test in Drosophila”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 520, no. 1-2, pp. 93-101, 2002.
- [7] N. Rascio and F. Navari-Izzo, “Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?” Plant Science, vol. 180, no. 2, pp. 169-181, 2011.
- [8] H. Kankia and Y. Abdulhamid, “Determination of accumulated heavy metals in benthic invertebrates found in Ajiwa Dam, Katsina State, Northern Nigeria.”, Archives of Applied Science Research, vol. 6, no. 6, pp. 80-87, 2014.
- [9] S. Sambu, U. Hemaram, R. Murugan and A. A. Alsofi, “Toxicological and teratogenic effect of various food additives: an updated review”, Biomedical Research International, vol. 2022, no. 1, pp. 6829409, 2022.
- [10] M. B. Hossain, J. Sultana, F. H. Pingki, A. A. U. Nur, M. S. Mia, M. A. Bakar, et al., “Accumulation and contamination assessment of heavy metals in sediments of commercial aquaculture farms from a coastal area along the northern Bay of Bengal”, Frontiers in Environmental Science, vol. 11, no. 1, pp.1148360, 2023.
- [11] K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K. O. Rahman, “Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review”, The Royal Society and Chemistry Advances, vol. 13, no. 26, pp. 17595-17610, 2023.
- [12] T. Chandrapalan and R.W. Kwong, “Functional significance and physiological regulation of essential trace metals in fish”. Journal of Experimental Biology, vol. 224, no. 24, jeb238790, 2021.
- [13] R. Ma, L. Feng, P. Wu, Y. Liu, H.M. Ren, S.W. Li, et al., “A new insight on copper: Promotion of collagen synthesis and myofiber growth and development in juvenile grass carp (Ctenopharyngodon idella)”, Animal Nutrition, vol. 15, pp. 22-33, 2023.
- [14] D. Denoyer, S. Masaldan, S. La Fontaine and M.A. Cater, “Targeting copper in cancer therapy: ‘Copper That Cancer”, Metallomics, vol. 7, no. 11, pp. 1459-1476. 2015.
- [15] P. G. Ridge, Y. Zhang and V.N. Gladyshev, “Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen” PLoS One, vol. 3, no. 1, e1378, 2008.
- [16] I. Scheiber, R. Dringen and J. F. Mercer, “Copper: effects of deficiency and overload.” Interrelations Between Essential Metal Ions and Human Diseases, pp. 359-387, 2013.
- [17] A. Bhattacharjee, K. Chakraborty and A. Shukla, “Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases”, Metallomics, vol. 9, no. 10, pp. 1376-1388, 2017.
- [18] P. Wang, Y. Yuan, K. Xu, H. Zhong, Y. Yang, S. Jin, et al., “Biological applications of copper-containing materials”, Bioactive Materials, vol. 6, no. 4, pp. 916-927, 2021.
- [19] N. Franchitto, P. Gandia-Mailly, B. Georges, A. Galinier, N. Telmon, J. L. Ducassé and D. Rougé, “Acute copper sulphate poisoning: a case report and literature review”, Resuscitation, vol. 78, no. 1, pp. 92-96, 2008.
- [20] J.A. Adeyemi, A.R.T. Machado, A. T. Ogunjimi, L.C. Alberici, L. M.G. Antunes and F. Barbosa Jr, “Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles”, Ecotoxicology and Environmental Safety, vol. 2020, no. 189, 109982, 2020.
- [21] S. Dev, R.L. Kruse, J.P. Hamilton and S. Lutsenko, “Wilson disease: update on pathophysiology and treatment”. Frontiers in Cell and Developmental Biology, vol. 10, 871877, 2022.
- [22] G. Genchi, G. Lauria, A. Catalano, A. Carocci and M. S. Sinicropi, “Prevalence of cobalt in the environment and its role in biological processes” Biology, vol. 12, no. 10, pp. 1335, 2023.
- [23] K. Yamada, “Cobalt: its role in health and disease”, Interrelations Between Essential Metal Ions and Human Diseases, vol. 13, pp. 295-320, 2013.
- [24] D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley and B. D. Kerger, “A review of the health hazards posed by cobalt”, Critical Reviews in Toxicology, vol. 43, no. 4, pp. 316-362, 2013.
- [25] X. Du, J. Liu, Y. Wang, M. Jin and Q. Ye, “Cobalt-related interstitial lung disease or hard metal lung disease: a case series of Chinese workers”, Toxicology and Industrial Health, vol. 37, no.5, pp. 280-288, 2021.
- [26] F. Momen Eslamiehei, M. Mashreghi and M. M. Matin, “Advancing colorectal cancer therapy with biosynthesized cobalt oxide nanoparticles: a study on their antioxidant, antibacterial, and anticancer efficacy”, Cancer Nanotechnology, vol. 15, no.1, pp. 22, 2024.
- [27] H. Cheng, B. F. Villahoz, R. D. Ponzio, M. Aschner and P. Chen, “Signaling Pathways Involved in Manganese-Induced Neurotoxicity”, Cells, vol. 12, no. 24, pp. 2842, 2023.
- [28] M, Lv, M. Chen, R. Zhang, W. Zhang, C. Wang, Y. Zhang, et al., “Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy”, Cell Research, vol. 30, no. 11, pp. 966-979, 2020.
- [29] R. Zhang, C. Wang, Y. Guan, X. Wei, M. Sha, M. Yi, et al., “Manganese salts function as potent adjuvants”, Cellular & Molecular Immunology, vol. 18, no.5, pp. 1222-1234, 2021.
- [30] D. Kulshreshtha, J. Ganguly and M. Jog, “Manganese and movement disorders: a review”, Journal of Movement Disorders, vol. 14, no. 2, pp. 93. 2021.
- [31] M. H. Ratner and E. Fitzgerald, “Understanding of the role of manganese in parkinsonism and Parkinson disease”, Neurology, vol. 88, no. 4, pp. 338-339, 2017.
- [32] H. Monsivais, C. L. Yeh, A. Edmondson, R. Harold, S. Snyder, E. M. Wells, et al., “Whole-brain mapping of increased manganese levels in welders and its association with exposure and motor function”, NeuroImage, vol. 288, pp. 120523. 2024.
- [33] N. Abbaspour, R. Hurrell and R. Kelishadi, “Review on iron and its importance for human health”, Journal of research in medical sciences: The official journal of Isfahan University of Medical Sciences, vol. 19, no. 2, pp. 164, 2014.
- [34] T. Ems, K. St Lucia and M. R. Huecker, “Biochemistry, iron absorption”, Study Guide from StatPearls Publishing, 2017.
- [35] S. R. Pasricha, J. Tye-Din, M. U. Muckenthaler and D. W. Swinkels, “Iron deficiency”, The Lancet, vol. 397, no. 10270, pp. 233-248, 2021.
- [36] M. S. Katsarou, M. Papasavva, R. Latsi and N. Drakoulis, “Hemochromatosis: hereditary hemochromatosis and HFE gene”, Vitamins and Hormones, vol. 110, pp. 201-222, 2019.
- [37] G. K. Schwalfenberg and S. J. Genuis, “The importance of magnesium in clinical healthcare”, Scientifica, vol. 2017 no. 1, 4179326, 2017.
- [38] A. A. Mathew and R. Panonnummal, “‘Magnesium’ the master cation-as a drug possibilities and evidences”, Biometals, vol. 34, no. 5, pp. 955-986, 2021.
- [39] W. Jahnen-Dechent and M. Ketteler, “Magnesium basics”, Clinical kidney journal, vol. 5, no. 1, pp. 3-14, 2012.
- [40] K. Kostov, “Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signalling”, International Journal of Molecular Sciences, vol. 20, no. 6, pp. 1351, 2019.
- [41] J. Baj, W. Flieger, G. Teresiński, G. Buszewicz, R. Sitarz, A. Forma, et al., “Magnesium, calcium, potassium, sodium, phosphorus, selenium, zinc, and chromium levels in alcohol use disorder: a review”, Journal of Clinical Medicine, vol. 9, no.6, pp. 1901, 2020.
- [42] J. H. William, K. Richards and J. Danziger, “Magnesium and drugs commonly used in chronic kidney disease”, Advances in Chronic Kidney Disease, vol. 25, no. 3, pp. 267-273, 2018.
- [43] C. T. Chasapis, A. C. Loutsidou, C. A. Spiliopoulou and M. E. Stefanidou “Zinc and human health: an update”, Archives of Toxicology, vol. 86, pp. 521-534, 2012.
- [44] A. S. Prasad, “Impact of the discovery of human zinc deficiency on health”, Journal of the American College of Nutrition, vol. 28, no. 3, pp. 257-265, 2009.
- [45] A. Hussain, W. Jiang, X. Wang, S. Shahid, N.M. Saba, M. Ahmad, et al., “Mechanistic impact of zinc deficiency in human development”, Frontiers in Nutrition, vol. 9, 717064, 2022.
- [46] A. S. Prasad, “Discovery of zinc for human health and biomarkers of zinc deficiency”, In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, pp. 241-260, 2017.
- [47] J. L. Willoughby and C. N. Bowen, “Zinc deficiency and toxicity in pediatric practice” Current Opinion in Pediatrics, vol. 26, no. 5, pp. 579-584, 2014.
- [48] M. Saiki, E. R. Alves, M. B. A. Vasconcellos, N. M. Sumita, O. Jaluul and W. Jacob-Filho, “Correlation studies between serum concentrations of zinc and lipoproteins”, Applied Life Sciences, vol.40, no. 48, 2009.
- [49] R. Maradi, V. R., Joshi, A. K. Mallick, G. M. Reddy, G. Shorey and R. V. Tey, “A correlation study between serum zinc and plasma total cholesterol, high density, and low-density lipoprotein cholesterol in thyroid dysfunction”, International Journal of Pharmaceutical Sciences Review and Research, vol. 7, no.2, pp. 122124, 2011.
- [50] N. Sreejayan, F. Dong, M. R. Kandadi, X. Yang and J. Ren, “Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice.” Obesity, vol. 16, no.6, pp. 1331-1337, 2008.
- [51] F. C. Lau, M. Bagchi, C.K. Sen and D. Bagchi, “Nutrigenomic basis of beneficial effects of chromium (III) on obesity and diabetes”, Molecular and Cellular Biochemistry, vol. 317, no.1, pp. 1-10, 2008.
- [52] J. Heshmati, R. Omani-Samani, S. Vesali, S. Maroufizadeh, M. Rezaeinejad, M. Razavi and M. Sepidarkish, “The effects of supplementation with chromium on insulin resistance indices in women with polycystic ovarian syndrome: a systematic review and meta-analysis of randomized clinical trials”, Hormone and Metabolic Research, vol. 50, no.03, pp. 193-200, 2018.
- [53] E. Sawicka, K. Jurkowska and A. Piwowar, “Chromium (III) and chromium (VI) as important players in the induction of genotoxicity-current view”, Annals of Agricultural and Environmental Medicine, vol. 28, no.1, 2021.
- [54] C. B. Klein, “Carcinogenicity and genotoxicity of chromium”, In Toxicology of Metals, vol. 1 pp. 205-219, 2023.
- [55] S. De Flora, “Threshold mechanisms and site specificity in chromium (VI) carcinogenesis”, Carcinogenesis, vol. 21, no. 4, pp. 533-541, 2000.
- [56] T. J. O’Brien, S. Ceryak and S. R. Patierno, “Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms”, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 533, no, 1-2, pp. 3-36, 2003.
- [57] K. Salnikow and A. Zhitkovich, “Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium”, Chemical Research in Toxicology, vol. 21, no.1, pp. 28-44, 2008.
- [58] K. J. Liu and X. Shi, X. “In vivo reduction of chromium (VI) and its related free radical generation”, Molecular Mechanisms of Metal Toxicity and Carcinogenesis, pp.41-47, 2001.
- [59] P. Sharma, S. P. Singh, S. K. Parakh and Y. W. Tong, “Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction”, Bioengineered, vol. 13, no.3, pp. 4923-4938, 2022.
- [60] K. P. Nickens, S. R. Patierno and S. Ceryak, “Chromium genotoxicity: A double-edged sword”, Chemico-Biological Interactions, vol. 188, no.2, pp. 276-288, 2010.
- [61] H. Hossini, B. Shafie, A.D. Niri, M. Nazari, A.J. Esfahlan, M. Ahmadpour, et al., “A comprehensive review on human health effects of chromium: insights on induced toxicity”, Environmental Science and Pollution Research, vol. 29, no. 47, pp. 70686-70705, 2022.
- [62] D. N. D’Ambrosio, R. D. Clugston and W. S. Blaner, “Vitamin A metabolism: an update”, Nutrients, vol. 3, no. 1, pp. 63-103, 2011.
- [63] S. A. Tanumihardjo, “Vitamin A and bone health: the balancing act”, Journal of Clinical Densitometry, vol. 16, no. 4, pp. 414-419, 2013.
- [64] X. H. Tang and L. J. Gudas, “Retinoids, retinoic acid receptors, and cancer”, Annual Review of Pathology: Mechanisms of Disease, vol. 6, no. 1, pp. 345-364, 2011.
- [65] L. MacDonagh, R. M. Santiago, S. G. Gray, E. Breen, S. Cuffe, S. P. Finn, et al., “Exploitation of the vitamin A/retinoic acid axis depletes ALDH1-positive cancer stem cells and re-sensitises resistant non-small cell lung cancer cells to cisplatin”, Translational Oncology, vol. 14, no. 4, pp. 101025, 2021.
- [66] K. P. West Jr, “Epidemiology and prevention of vitamin A deficiency disorders”, The Retinoids: Biology, Biochemistry, and Disease, pp. 505-527, 2015.
- [67] K. L. Penniston and S. A. Tanumihardjo, “The acute and chronic toxic effects of vitamin A”, The American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 191-201, 2006.
- [68] M. Lorenzo, M. Nadeau, J. Harrington and P. J. Gill, “Refractory hypercalcemia owing to vitamin A toxicity in a 4-year-old boy”, Canadian Medical Association Journal, vol. 192, no. 25, pp. E671-E675, 2020.
- [69] A. Carazo, K. Macáková, K. Matoušová, L. K. Krčmová, M. Protti and P. Mladěnka, “Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity”, Nutrients, vol. 13, no. 5, pp. 1703, 2021.
- [70] H. K. Biesalski and D. Nohr, “New aspects in vitamin A metabolism: the role of retinyl esters as systemic and local sources for retinol in mucous epithelia” The Journal of Nutrition, vol. 134, no. 12, pp. 3453S-3457S, 2004.
- [71] M. S. Razzaque, “Can adverse effects of excessive vitamin D supplementation occur without developing hypervitaminosis D?”, The Journal of Steroid Biochemistry and Molecular Biology, vol. 180, pp. 81-86, 2018.
- [72] D. D. Bikle, “Vitamin D metabolism, mechanism of action, and clinical applications.” Chemistry and Biology, vol. 21, no. 3, pp. 319-329, 2014.
- [73] R. Bouillon, C. Marcocci, G. Carmeliet, D., Bikle, J. H. White, B. Dawson-Hughes, et al., “Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions.” Endocrine Reviews, vol. 40, no. 4, pp. 1109-1151, 2019.
- [74] P. A. Koul, S. H. Ahmad, F. Ahmad, R. A. Jan, S. U. Shah and U. H. Khan, “Vitamin d toxicity in adults: a case series from an area with endemic hypovitaminosis d”, Oman Medical Journal, vol 26 no. 3, pp. 201, 2011.
- [75] P. Kaur, S. K. Mishra and A. Mithal, “Vitamin D toxicity resulting from overzealous correction of vitamin D deficiency”, Clinical Endocrinology, vol. 83, no. 3, pp. 327-331, 2015.
- [76] K. Galior, S. Grebe and R. Singh, “Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports”, Nutrients, vol. 10, no. 8, pp. 953, 2018.
- [77] E. Marcinowska-Suchowierska, M. Kupisz-Urbańska, J. Łukaszkiewicz, P. Płudowski and G. Jones, “Vitamin D toxicity–a clinical perspective”, Frontiers in Endocrinology, vol. 9, pp. 550, 2018.
- [78] J. Levita, G. Wilar, I, Wahyuni, L. C. Bawono, T. Ramadaini, R. Rohani and A. Diantini, “Clinical toxicology of vitamin D in pediatrics: a review and case reports”, Toxics, vol. 11, no. 7, pp. 642, 2023.
- [79] H. M. Evans and K. S. Bishop, “On the existence of a hitherto unrecognized dietary factor essential for reproduction”, Science, vol. 56, no. 1458, pp. 650-651, 1922.
- [80] G. W. Burton and M. G. Traber, “Vitamin E: antioxidant activity, biokinetics, and bioavailability”, Annual Review of Nutrition, vol. 10, no. 1, pp. 357-382, 1990.
- [81] V. A. Vaishali Aggarwal, D. Kashyap, K. Sak, H. S. Tuli, A. Jain, A., Chaudhary, et al., “Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements”, vol. 20, no. 3, pp. 656, 2019.
- [82] H. Ahsan, A. Ahad, J. Iqbal and W. A. Siddiqui “Pharmacological potential of tocotrienols: a review” Nutrition and Metabolism, vol. 11, pp. 1-22, 2014.
- [83] K. N. Owen and O. Dewald, “Vitamin E toxicity”, n: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 33232043. 2020.
- [84] E. R. Miller, R. Pastor-Barriuso, D. Dalal, R. A. Riemersma, L. J. Appel and E. Guallar, “Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality”, Annals of Internal Medicine, vol. 142, no. 1, pp. 37-46, 2005.
- [85] M. Schürks, R. J. Glynn, P. M. Rist, C. Tzourio and T. Kurth, “Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials”, British Medical Journal, vol. 341, pp. 1-8, 2010.
- [86] G. Bjelakovic, D. Nikolova, L. L. Gluud, R. G. Simonetti and C. Gluud, “Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases” Cochrane Database of Systematic Reviews, vol. 3, 2012.
- [87] H. D. Sesso, W. G. Christen, V. Bubes, J. P. Smith, J. MacFadyen, M. Schvartz, et al., “Vitamins E and C in the prevention of cardiovascular disease in men: the physicians' health study II randomized controlled trial”, Journal of the American Medical Association, vol. 300, no.18, pp. 2123-2133, 2008.
- [88] S. Araki and A. Shirahata, “Vitamin K deficiency bleeding in infancy”, Nutrients, vol. 12, no. 3, pp.780, 2020.
- [89] G. K. Schwalfenberg, “Vitamins K1 and K2: the emerging group of vitamins required for human health”, Journal of Nutrition and Metabolism, vol. 2017, no. 1, pp. 6254836, 2017.
- [90] S. G. Harshman and M. K. Shea, “The role of vitamin K in chronic aging diseases: inflammation, cardiovascular disease, and osteoarthritis”, Current Nutrition Reports, vol. 5, pp. 90-98, 2016.
- [91] D. S. Popa, G. Bigman and M. E. Rusu, “The role of vitamin K in humans: implication in aging and age-associated diseases”, Antioxidants, vol. 10, no. 4, pp. 566, 2021.
- [92] W. Yang, Y. Wang, L. Liu, L. Liu, S. Li and Y. Li, “Protective effect of vitamin K2 (MK-7) on acute lung injury induced by lipopolysaccharide in mice”, Current Issues in Molecular Biology, vol. 46, no. 3, pp. 1700-1712, 2024.
- [93] P. Mladěnka, K. Macáková, L. Kujovská Krčmová, L. Javorská, K. Mrštná, A. Carazo, et al., “Vitamin K–sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity”, Nutrition Reviews, vol. 80, no. 4, pp. 677-698, 2022.
- [94] K. Pucaj, H. Rasmussen, M. Møller and T. Preston, “Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7”, Toxicology Mechanisms and Methods, vol. 21, no. 7, pp. 520-532, 2011.
- [95] J. Ansell, J. Hirsh, E. Hylek, A. Jacobson, M. Crowther and G. Palareti, “Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians evidence-based clinical practice guidelines”, Chest, vol. 133, no. 6, pp. 160S-198S, 2008.
- [96] B. Kaya, “Anti-genotoxic effect of ascorbic acid on mutagenic dose of three alkylating agents”, Turkish Journal of Biology, vol. 27, no. 4, pp. 241-246, 2003.
- [97] T. A. Ajith, M. Ann and J. Thomas, “Evaluation of comparative and combined antimutagenic potential of vitamin C and vitamin E using histidine mutant Salmonella typhimurium strains”, Indian Journal of Clinical Biochemistry, vol. 23, pp. 24-28, 2008.
- [98] M. Doseděl, E. Jirkovský, K. Macáková, L. K. Krčmová, L. Javorská, J. Pourová, et al., “Vitamin C sources, physiological role, kinetics, deficiency, use, toxicity, and determination”, Nutrients, vol. 13, no.2, pp. 615, 2021.
- [99] C. L. Linster and E. Van Schaftingen, “Vitamin C: biosynthesis, recycling and degradation in mammals” The Federation of European Biochemical Societies Journal, vol. 274, no.1, pp. 1-22, 2007.
- [100] E. N. Taylor, M. J. Stampfer and G. C. Curhan, “Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up”, Journal of the American Society of Nephrology, vol. 15, no. 12, pp. 3225-3232, 2004.
- [101] M. Levine, S. C. Rumsey, R. Daruwala, J. B. Park and Y. Wang, “Criteria and recommendations for vitamin C intake” Journal of the American Medical Association, vol. 281, no. 15, pp. 1415-1423, 1999.
- [102] D. A. Bender, “Nutritional biochemistry of the vitamins.” Cambridge university press, 2003.
- [103] K. Mikkelsen, L. Stojanovska, K. Tangalakis, M. Bosevski and V. Apostolopoulos, “Cognitive decline: A vitamin B perspective”, Maturitas, vol. 93, pp. 108-113, 2016.
- [104] M. V. Makarov, S. A. Trammell and M. E. Migaud, “The chemistry of the vitamin B3 metabolome”, Biochemical Society Transactions, vol. 47, no. 1, pp. 131-147, 2019.
- [105] A. A. Gheita, T. A. Gheita and S. A. Kenawy, “The potential role of B5: A stitch in time and switch in cytokine” Phytotherapy Research, vol. 34, no. 2, pp. 306-314, 2020.
- [106] C. Sirithanakorn and J. E. Cronan, “Biotin, a universal and essential cofactor: synthesis, ligation and regulation” Federation of European Microbiological Societies Microbiology Reviews, vol. 45, no. 4, fuab003, 2021.
- [107] Z. Bayram-Weston, J. Knight and M. A. Sienz, “Vitamin B complex: B group vitamins and their role in the body” Nursing Times, vol. 120, no. 3, pp. 1-6, 2024.
- [108] J. R. Guyton and H. E. Bays, “Safety considerations with niacin therapy” The American Journal of Cardiology, vol. 99, no. 6, pp. 22-31, 2007.
- [109] D. O. Kennedy, “B vitamins and the brain: mechanisms, dose and efficacy a review”, Nutrients, vol, 8, no.2, pp. 68, 2016.
- [110] J. W. Miller, A. Smith, A. M. Troen, J. B. Mason, P. F. Jacques and J. Selhub, “Excess folic acid and vitamin B12 deficiency: clinical implications?”, Food and Nutrition Bulletin, vol. 45, no. 1, pp. 67-72, 2024.
- [111] F. Hadtstein and M. Vrolijk, “Vitamin B6 induced neuropathy: exploring the mechanisms of pyridoxine toxicity” Advances in Nutrition, vol. 12, no. 5, pp. 1911-1929, 2021.
Vitaminlerin ve Metallerin Çift Yönlü Etkileri: Sağlık, Mutajenite ve Antimutajenite Üzerine Bir İnceleme
Year 2024,
Volume: 4 Issue: 2, 73 - 91, 03.10.2024
Eda Delik
,
Burcu Emine Tefon Öztürk
,
Bülent Kaya
Abstract
Ağır metaller ve vitaminler insan sağlığı üzerinde önemli etkilere sahip maddelerdir. Çevresel ve endüstriyel kaynaklardan dolayı ağır metallere maruziyet toksik etkilere yol açarken, vitaminler genellikle vücut fonksiyonlarını destekleyen esansiyel bileşenler olarak bilinmektedir. Ancak her iki grup da insan sağlığı açısından doza bağlı olarak zararlı veya yararlı olabilmektedir. İkisinin de ortak noktalarından biri, eser miktarda insan vücudu için gerekli olmalarıdır. Ayrıca hem ağır metaller hem de vitaminler metabolizmanın düzgün yürüyebilmesi için genellikle vücuda dışarıdan alınmaları gereken maddelerdir. Bu derlemede ağır metallerin ve vitaminlerin toksik ve antitoksik etkileri ele alınmıştır. Ayrıca bu maddelerin insan sağlığı üzerindeki etkileri maruz kalınan dozlarla ilişkilendirilerek hem zararlı hem de yararlı yönleri üzerinde durulmuştur. Sağlık için önemli bazı metallere ve vitamin gruplarına değinilerek, yüksek dozların potansiyel toksisite yaratabileceği vurgulanmıştır. Sonuç olarak bu derleme bireylerin sağlığını koruma stratejileri geliştirmelerine ve sağlık profesyonellerinin maruziyet risklerini etkili bir şekilde yönetmelerine yönelik önemli bulgular sunmayı amaçlamıştır.
References
- [1] J. Morales-Gutierrez, S. Díaz-Cortés, M.A. Montoya-Giraldo and A.F. Zuluaga, “Toxicity induced by multiple high doses of vitamin B12 during pernicious anaemia treatment: a case report.” Clinical Toxicology, vol. 58, no. 2, pp. 129-131, 2020.
- [2] S. Matsumoto, X. Fang, M.G. Traber, K. D. Jones, C. Langelier, P. Hayakawa Serpa, et al., “Dose-dependent pulmonary toxicity of aerosolized vitamin E acetate.” American Journal of Respiratory Cell and Molecular Biology, vol. 63, no. 6, pp. 748-757, 2020.
- [3] S. Yokota, T. Shirahata, J. Yusa, Y. Sakurai, H. Ito and S. Oshio, “Long-term dietary intake of excessive vitamin A impairs spermatogenesis in mice.” The Journal of Toxicological Sciences, vol. 44, no. 4, pp. 257-271, 2019.
- [4] Z. Huang, A.H. Rose and P.R. Hoffmann, “The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities” Antioxidants and Redox Signaling, vol. 16, no. 7, pp. 705-743, 2012.
- [5] S. Dasharathy, S. Arjunan, A. Maliyur Basavaraju, V. Murugasen, S. Ramachandran, R. Keshav and R. Murugan, “Mutagenic, carcinogenic, and teratogenic effect of heavy metals.” Evidence-Based Complementary and Alternative Medicine, vol. 2022, no. 1, pp. 8011953, 2022.
- [6] B. Kaya, A. Creus, A. Velázquez, A. Yanikoǧlu and R. Marcos, “Genotoxicity is modulated by ascorbic acid: studies using the wing spot test in Drosophila”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 520, no. 1-2, pp. 93-101, 2002.
- [7] N. Rascio and F. Navari-Izzo, “Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?” Plant Science, vol. 180, no. 2, pp. 169-181, 2011.
- [8] H. Kankia and Y. Abdulhamid, “Determination of accumulated heavy metals in benthic invertebrates found in Ajiwa Dam, Katsina State, Northern Nigeria.”, Archives of Applied Science Research, vol. 6, no. 6, pp. 80-87, 2014.
- [9] S. Sambu, U. Hemaram, R. Murugan and A. A. Alsofi, “Toxicological and teratogenic effect of various food additives: an updated review”, Biomedical Research International, vol. 2022, no. 1, pp. 6829409, 2022.
- [10] M. B. Hossain, J. Sultana, F. H. Pingki, A. A. U. Nur, M. S. Mia, M. A. Bakar, et al., “Accumulation and contamination assessment of heavy metals in sediments of commercial aquaculture farms from a coastal area along the northern Bay of Bengal”, Frontiers in Environmental Science, vol. 11, no. 1, pp.1148360, 2023.
- [11] K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K. O. Rahman, “Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review”, The Royal Society and Chemistry Advances, vol. 13, no. 26, pp. 17595-17610, 2023.
- [12] T. Chandrapalan and R.W. Kwong, “Functional significance and physiological regulation of essential trace metals in fish”. Journal of Experimental Biology, vol. 224, no. 24, jeb238790, 2021.
- [13] R. Ma, L. Feng, P. Wu, Y. Liu, H.M. Ren, S.W. Li, et al., “A new insight on copper: Promotion of collagen synthesis and myofiber growth and development in juvenile grass carp (Ctenopharyngodon idella)”, Animal Nutrition, vol. 15, pp. 22-33, 2023.
- [14] D. Denoyer, S. Masaldan, S. La Fontaine and M.A. Cater, “Targeting copper in cancer therapy: ‘Copper That Cancer”, Metallomics, vol. 7, no. 11, pp. 1459-1476. 2015.
- [15] P. G. Ridge, Y. Zhang and V.N. Gladyshev, “Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen” PLoS One, vol. 3, no. 1, e1378, 2008.
- [16] I. Scheiber, R. Dringen and J. F. Mercer, “Copper: effects of deficiency and overload.” Interrelations Between Essential Metal Ions and Human Diseases, pp. 359-387, 2013.
- [17] A. Bhattacharjee, K. Chakraborty and A. Shukla, “Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases”, Metallomics, vol. 9, no. 10, pp. 1376-1388, 2017.
- [18] P. Wang, Y. Yuan, K. Xu, H. Zhong, Y. Yang, S. Jin, et al., “Biological applications of copper-containing materials”, Bioactive Materials, vol. 6, no. 4, pp. 916-927, 2021.
- [19] N. Franchitto, P. Gandia-Mailly, B. Georges, A. Galinier, N. Telmon, J. L. Ducassé and D. Rougé, “Acute copper sulphate poisoning: a case report and literature review”, Resuscitation, vol. 78, no. 1, pp. 92-96, 2008.
- [20] J.A. Adeyemi, A.R.T. Machado, A. T. Ogunjimi, L.C. Alberici, L. M.G. Antunes and F. Barbosa Jr, “Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles”, Ecotoxicology and Environmental Safety, vol. 2020, no. 189, 109982, 2020.
- [21] S. Dev, R.L. Kruse, J.P. Hamilton and S. Lutsenko, “Wilson disease: update on pathophysiology and treatment”. Frontiers in Cell and Developmental Biology, vol. 10, 871877, 2022.
- [22] G. Genchi, G. Lauria, A. Catalano, A. Carocci and M. S. Sinicropi, “Prevalence of cobalt in the environment and its role in biological processes” Biology, vol. 12, no. 10, pp. 1335, 2023.
- [23] K. Yamada, “Cobalt: its role in health and disease”, Interrelations Between Essential Metal Ions and Human Diseases, vol. 13, pp. 295-320, 2013.
- [24] D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley and B. D. Kerger, “A review of the health hazards posed by cobalt”, Critical Reviews in Toxicology, vol. 43, no. 4, pp. 316-362, 2013.
- [25] X. Du, J. Liu, Y. Wang, M. Jin and Q. Ye, “Cobalt-related interstitial lung disease or hard metal lung disease: a case series of Chinese workers”, Toxicology and Industrial Health, vol. 37, no.5, pp. 280-288, 2021.
- [26] F. Momen Eslamiehei, M. Mashreghi and M. M. Matin, “Advancing colorectal cancer therapy with biosynthesized cobalt oxide nanoparticles: a study on their antioxidant, antibacterial, and anticancer efficacy”, Cancer Nanotechnology, vol. 15, no.1, pp. 22, 2024.
- [27] H. Cheng, B. F. Villahoz, R. D. Ponzio, M. Aschner and P. Chen, “Signaling Pathways Involved in Manganese-Induced Neurotoxicity”, Cells, vol. 12, no. 24, pp. 2842, 2023.
- [28] M, Lv, M. Chen, R. Zhang, W. Zhang, C. Wang, Y. Zhang, et al., “Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy”, Cell Research, vol. 30, no. 11, pp. 966-979, 2020.
- [29] R. Zhang, C. Wang, Y. Guan, X. Wei, M. Sha, M. Yi, et al., “Manganese salts function as potent adjuvants”, Cellular & Molecular Immunology, vol. 18, no.5, pp. 1222-1234, 2021.
- [30] D. Kulshreshtha, J. Ganguly and M. Jog, “Manganese and movement disorders: a review”, Journal of Movement Disorders, vol. 14, no. 2, pp. 93. 2021.
- [31] M. H. Ratner and E. Fitzgerald, “Understanding of the role of manganese in parkinsonism and Parkinson disease”, Neurology, vol. 88, no. 4, pp. 338-339, 2017.
- [32] H. Monsivais, C. L. Yeh, A. Edmondson, R. Harold, S. Snyder, E. M. Wells, et al., “Whole-brain mapping of increased manganese levels in welders and its association with exposure and motor function”, NeuroImage, vol. 288, pp. 120523. 2024.
- [33] N. Abbaspour, R. Hurrell and R. Kelishadi, “Review on iron and its importance for human health”, Journal of research in medical sciences: The official journal of Isfahan University of Medical Sciences, vol. 19, no. 2, pp. 164, 2014.
- [34] T. Ems, K. St Lucia and M. R. Huecker, “Biochemistry, iron absorption”, Study Guide from StatPearls Publishing, 2017.
- [35] S. R. Pasricha, J. Tye-Din, M. U. Muckenthaler and D. W. Swinkels, “Iron deficiency”, The Lancet, vol. 397, no. 10270, pp. 233-248, 2021.
- [36] M. S. Katsarou, M. Papasavva, R. Latsi and N. Drakoulis, “Hemochromatosis: hereditary hemochromatosis and HFE gene”, Vitamins and Hormones, vol. 110, pp. 201-222, 2019.
- [37] G. K. Schwalfenberg and S. J. Genuis, “The importance of magnesium in clinical healthcare”, Scientifica, vol. 2017 no. 1, 4179326, 2017.
- [38] A. A. Mathew and R. Panonnummal, “‘Magnesium’ the master cation-as a drug possibilities and evidences”, Biometals, vol. 34, no. 5, pp. 955-986, 2021.
- [39] W. Jahnen-Dechent and M. Ketteler, “Magnesium basics”, Clinical kidney journal, vol. 5, no. 1, pp. 3-14, 2012.
- [40] K. Kostov, “Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signalling”, International Journal of Molecular Sciences, vol. 20, no. 6, pp. 1351, 2019.
- [41] J. Baj, W. Flieger, G. Teresiński, G. Buszewicz, R. Sitarz, A. Forma, et al., “Magnesium, calcium, potassium, sodium, phosphorus, selenium, zinc, and chromium levels in alcohol use disorder: a review”, Journal of Clinical Medicine, vol. 9, no.6, pp. 1901, 2020.
- [42] J. H. William, K. Richards and J. Danziger, “Magnesium and drugs commonly used in chronic kidney disease”, Advances in Chronic Kidney Disease, vol. 25, no. 3, pp. 267-273, 2018.
- [43] C. T. Chasapis, A. C. Loutsidou, C. A. Spiliopoulou and M. E. Stefanidou “Zinc and human health: an update”, Archives of Toxicology, vol. 86, pp. 521-534, 2012.
- [44] A. S. Prasad, “Impact of the discovery of human zinc deficiency on health”, Journal of the American College of Nutrition, vol. 28, no. 3, pp. 257-265, 2009.
- [45] A. Hussain, W. Jiang, X. Wang, S. Shahid, N.M. Saba, M. Ahmad, et al., “Mechanistic impact of zinc deficiency in human development”, Frontiers in Nutrition, vol. 9, 717064, 2022.
- [46] A. S. Prasad, “Discovery of zinc for human health and biomarkers of zinc deficiency”, In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, pp. 241-260, 2017.
- [47] J. L. Willoughby and C. N. Bowen, “Zinc deficiency and toxicity in pediatric practice” Current Opinion in Pediatrics, vol. 26, no. 5, pp. 579-584, 2014.
- [48] M. Saiki, E. R. Alves, M. B. A. Vasconcellos, N. M. Sumita, O. Jaluul and W. Jacob-Filho, “Correlation studies between serum concentrations of zinc and lipoproteins”, Applied Life Sciences, vol.40, no. 48, 2009.
- [49] R. Maradi, V. R., Joshi, A. K. Mallick, G. M. Reddy, G. Shorey and R. V. Tey, “A correlation study between serum zinc and plasma total cholesterol, high density, and low-density lipoprotein cholesterol in thyroid dysfunction”, International Journal of Pharmaceutical Sciences Review and Research, vol. 7, no.2, pp. 122124, 2011.
- [50] N. Sreejayan, F. Dong, M. R. Kandadi, X. Yang and J. Ren, “Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice.” Obesity, vol. 16, no.6, pp. 1331-1337, 2008.
- [51] F. C. Lau, M. Bagchi, C.K. Sen and D. Bagchi, “Nutrigenomic basis of beneficial effects of chromium (III) on obesity and diabetes”, Molecular and Cellular Biochemistry, vol. 317, no.1, pp. 1-10, 2008.
- [52] J. Heshmati, R. Omani-Samani, S. Vesali, S. Maroufizadeh, M. Rezaeinejad, M. Razavi and M. Sepidarkish, “The effects of supplementation with chromium on insulin resistance indices in women with polycystic ovarian syndrome: a systematic review and meta-analysis of randomized clinical trials”, Hormone and Metabolic Research, vol. 50, no.03, pp. 193-200, 2018.
- [53] E. Sawicka, K. Jurkowska and A. Piwowar, “Chromium (III) and chromium (VI) as important players in the induction of genotoxicity-current view”, Annals of Agricultural and Environmental Medicine, vol. 28, no.1, 2021.
- [54] C. B. Klein, “Carcinogenicity and genotoxicity of chromium”, In Toxicology of Metals, vol. 1 pp. 205-219, 2023.
- [55] S. De Flora, “Threshold mechanisms and site specificity in chromium (VI) carcinogenesis”, Carcinogenesis, vol. 21, no. 4, pp. 533-541, 2000.
- [56] T. J. O’Brien, S. Ceryak and S. R. Patierno, “Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms”, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 533, no, 1-2, pp. 3-36, 2003.
- [57] K. Salnikow and A. Zhitkovich, “Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium”, Chemical Research in Toxicology, vol. 21, no.1, pp. 28-44, 2008.
- [58] K. J. Liu and X. Shi, X. “In vivo reduction of chromium (VI) and its related free radical generation”, Molecular Mechanisms of Metal Toxicity and Carcinogenesis, pp.41-47, 2001.
- [59] P. Sharma, S. P. Singh, S. K. Parakh and Y. W. Tong, “Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction”, Bioengineered, vol. 13, no.3, pp. 4923-4938, 2022.
- [60] K. P. Nickens, S. R. Patierno and S. Ceryak, “Chromium genotoxicity: A double-edged sword”, Chemico-Biological Interactions, vol. 188, no.2, pp. 276-288, 2010.
- [61] H. Hossini, B. Shafie, A.D. Niri, M. Nazari, A.J. Esfahlan, M. Ahmadpour, et al., “A comprehensive review on human health effects of chromium: insights on induced toxicity”, Environmental Science and Pollution Research, vol. 29, no. 47, pp. 70686-70705, 2022.
- [62] D. N. D’Ambrosio, R. D. Clugston and W. S. Blaner, “Vitamin A metabolism: an update”, Nutrients, vol. 3, no. 1, pp. 63-103, 2011.
- [63] S. A. Tanumihardjo, “Vitamin A and bone health: the balancing act”, Journal of Clinical Densitometry, vol. 16, no. 4, pp. 414-419, 2013.
- [64] X. H. Tang and L. J. Gudas, “Retinoids, retinoic acid receptors, and cancer”, Annual Review of Pathology: Mechanisms of Disease, vol. 6, no. 1, pp. 345-364, 2011.
- [65] L. MacDonagh, R. M. Santiago, S. G. Gray, E. Breen, S. Cuffe, S. P. Finn, et al., “Exploitation of the vitamin A/retinoic acid axis depletes ALDH1-positive cancer stem cells and re-sensitises resistant non-small cell lung cancer cells to cisplatin”, Translational Oncology, vol. 14, no. 4, pp. 101025, 2021.
- [66] K. P. West Jr, “Epidemiology and prevention of vitamin A deficiency disorders”, The Retinoids: Biology, Biochemistry, and Disease, pp. 505-527, 2015.
- [67] K. L. Penniston and S. A. Tanumihardjo, “The acute and chronic toxic effects of vitamin A”, The American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 191-201, 2006.
- [68] M. Lorenzo, M. Nadeau, J. Harrington and P. J. Gill, “Refractory hypercalcemia owing to vitamin A toxicity in a 4-year-old boy”, Canadian Medical Association Journal, vol. 192, no. 25, pp. E671-E675, 2020.
- [69] A. Carazo, K. Macáková, K. Matoušová, L. K. Krčmová, M. Protti and P. Mladěnka, “Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity”, Nutrients, vol. 13, no. 5, pp. 1703, 2021.
- [70] H. K. Biesalski and D. Nohr, “New aspects in vitamin A metabolism: the role of retinyl esters as systemic and local sources for retinol in mucous epithelia” The Journal of Nutrition, vol. 134, no. 12, pp. 3453S-3457S, 2004.
- [71] M. S. Razzaque, “Can adverse effects of excessive vitamin D supplementation occur without developing hypervitaminosis D?”, The Journal of Steroid Biochemistry and Molecular Biology, vol. 180, pp. 81-86, 2018.
- [72] D. D. Bikle, “Vitamin D metabolism, mechanism of action, and clinical applications.” Chemistry and Biology, vol. 21, no. 3, pp. 319-329, 2014.
- [73] R. Bouillon, C. Marcocci, G. Carmeliet, D., Bikle, J. H. White, B. Dawson-Hughes, et al., “Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions.” Endocrine Reviews, vol. 40, no. 4, pp. 1109-1151, 2019.
- [74] P. A. Koul, S. H. Ahmad, F. Ahmad, R. A. Jan, S. U. Shah and U. H. Khan, “Vitamin d toxicity in adults: a case series from an area with endemic hypovitaminosis d”, Oman Medical Journal, vol 26 no. 3, pp. 201, 2011.
- [75] P. Kaur, S. K. Mishra and A. Mithal, “Vitamin D toxicity resulting from overzealous correction of vitamin D deficiency”, Clinical Endocrinology, vol. 83, no. 3, pp. 327-331, 2015.
- [76] K. Galior, S. Grebe and R. Singh, “Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports”, Nutrients, vol. 10, no. 8, pp. 953, 2018.
- [77] E. Marcinowska-Suchowierska, M. Kupisz-Urbańska, J. Łukaszkiewicz, P. Płudowski and G. Jones, “Vitamin D toxicity–a clinical perspective”, Frontiers in Endocrinology, vol. 9, pp. 550, 2018.
- [78] J. Levita, G. Wilar, I, Wahyuni, L. C. Bawono, T. Ramadaini, R. Rohani and A. Diantini, “Clinical toxicology of vitamin D in pediatrics: a review and case reports”, Toxics, vol. 11, no. 7, pp. 642, 2023.
- [79] H. M. Evans and K. S. Bishop, “On the existence of a hitherto unrecognized dietary factor essential for reproduction”, Science, vol. 56, no. 1458, pp. 650-651, 1922.
- [80] G. W. Burton and M. G. Traber, “Vitamin E: antioxidant activity, biokinetics, and bioavailability”, Annual Review of Nutrition, vol. 10, no. 1, pp. 357-382, 1990.
- [81] V. A. Vaishali Aggarwal, D. Kashyap, K. Sak, H. S. Tuli, A. Jain, A., Chaudhary, et al., “Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements”, vol. 20, no. 3, pp. 656, 2019.
- [82] H. Ahsan, A. Ahad, J. Iqbal and W. A. Siddiqui “Pharmacological potential of tocotrienols: a review” Nutrition and Metabolism, vol. 11, pp. 1-22, 2014.
- [83] K. N. Owen and O. Dewald, “Vitamin E toxicity”, n: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 33232043. 2020.
- [84] E. R. Miller, R. Pastor-Barriuso, D. Dalal, R. A. Riemersma, L. J. Appel and E. Guallar, “Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality”, Annals of Internal Medicine, vol. 142, no. 1, pp. 37-46, 2005.
- [85] M. Schürks, R. J. Glynn, P. M. Rist, C. Tzourio and T. Kurth, “Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials”, British Medical Journal, vol. 341, pp. 1-8, 2010.
- [86] G. Bjelakovic, D. Nikolova, L. L. Gluud, R. G. Simonetti and C. Gluud, “Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases” Cochrane Database of Systematic Reviews, vol. 3, 2012.
- [87] H. D. Sesso, W. G. Christen, V. Bubes, J. P. Smith, J. MacFadyen, M. Schvartz, et al., “Vitamins E and C in the prevention of cardiovascular disease in men: the physicians' health study II randomized controlled trial”, Journal of the American Medical Association, vol. 300, no.18, pp. 2123-2133, 2008.
- [88] S. Araki and A. Shirahata, “Vitamin K deficiency bleeding in infancy”, Nutrients, vol. 12, no. 3, pp.780, 2020.
- [89] G. K. Schwalfenberg, “Vitamins K1 and K2: the emerging group of vitamins required for human health”, Journal of Nutrition and Metabolism, vol. 2017, no. 1, pp. 6254836, 2017.
- [90] S. G. Harshman and M. K. Shea, “The role of vitamin K in chronic aging diseases: inflammation, cardiovascular disease, and osteoarthritis”, Current Nutrition Reports, vol. 5, pp. 90-98, 2016.
- [91] D. S. Popa, G. Bigman and M. E. Rusu, “The role of vitamin K in humans: implication in aging and age-associated diseases”, Antioxidants, vol. 10, no. 4, pp. 566, 2021.
- [92] W. Yang, Y. Wang, L. Liu, L. Liu, S. Li and Y. Li, “Protective effect of vitamin K2 (MK-7) on acute lung injury induced by lipopolysaccharide in mice”, Current Issues in Molecular Biology, vol. 46, no. 3, pp. 1700-1712, 2024.
- [93] P. Mladěnka, K. Macáková, L. Kujovská Krčmová, L. Javorská, K. Mrštná, A. Carazo, et al., “Vitamin K–sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity”, Nutrition Reviews, vol. 80, no. 4, pp. 677-698, 2022.
- [94] K. Pucaj, H. Rasmussen, M. Møller and T. Preston, “Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7”, Toxicology Mechanisms and Methods, vol. 21, no. 7, pp. 520-532, 2011.
- [95] J. Ansell, J. Hirsh, E. Hylek, A. Jacobson, M. Crowther and G. Palareti, “Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians evidence-based clinical practice guidelines”, Chest, vol. 133, no. 6, pp. 160S-198S, 2008.
- [96] B. Kaya, “Anti-genotoxic effect of ascorbic acid on mutagenic dose of three alkylating agents”, Turkish Journal of Biology, vol. 27, no. 4, pp. 241-246, 2003.
- [97] T. A. Ajith, M. Ann and J. Thomas, “Evaluation of comparative and combined antimutagenic potential of vitamin C and vitamin E using histidine mutant Salmonella typhimurium strains”, Indian Journal of Clinical Biochemistry, vol. 23, pp. 24-28, 2008.
- [98] M. Doseděl, E. Jirkovský, K. Macáková, L. K. Krčmová, L. Javorská, J. Pourová, et al., “Vitamin C sources, physiological role, kinetics, deficiency, use, toxicity, and determination”, Nutrients, vol. 13, no.2, pp. 615, 2021.
- [99] C. L. Linster and E. Van Schaftingen, “Vitamin C: biosynthesis, recycling and degradation in mammals” The Federation of European Biochemical Societies Journal, vol. 274, no.1, pp. 1-22, 2007.
- [100] E. N. Taylor, M. J. Stampfer and G. C. Curhan, “Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up”, Journal of the American Society of Nephrology, vol. 15, no. 12, pp. 3225-3232, 2004.
- [101] M. Levine, S. C. Rumsey, R. Daruwala, J. B. Park and Y. Wang, “Criteria and recommendations for vitamin C intake” Journal of the American Medical Association, vol. 281, no. 15, pp. 1415-1423, 1999.
- [102] D. A. Bender, “Nutritional biochemistry of the vitamins.” Cambridge university press, 2003.
- [103] K. Mikkelsen, L. Stojanovska, K. Tangalakis, M. Bosevski and V. Apostolopoulos, “Cognitive decline: A vitamin B perspective”, Maturitas, vol. 93, pp. 108-113, 2016.
- [104] M. V. Makarov, S. A. Trammell and M. E. Migaud, “The chemistry of the vitamin B3 metabolome”, Biochemical Society Transactions, vol. 47, no. 1, pp. 131-147, 2019.
- [105] A. A. Gheita, T. A. Gheita and S. A. Kenawy, “The potential role of B5: A stitch in time and switch in cytokine” Phytotherapy Research, vol. 34, no. 2, pp. 306-314, 2020.
- [106] C. Sirithanakorn and J. E. Cronan, “Biotin, a universal and essential cofactor: synthesis, ligation and regulation” Federation of European Microbiological Societies Microbiology Reviews, vol. 45, no. 4, fuab003, 2021.
- [107] Z. Bayram-Weston, J. Knight and M. A. Sienz, “Vitamin B complex: B group vitamins and their role in the body” Nursing Times, vol. 120, no. 3, pp. 1-6, 2024.
- [108] J. R. Guyton and H. E. Bays, “Safety considerations with niacin therapy” The American Journal of Cardiology, vol. 99, no. 6, pp. 22-31, 2007.
- [109] D. O. Kennedy, “B vitamins and the brain: mechanisms, dose and efficacy a review”, Nutrients, vol, 8, no.2, pp. 68, 2016.
- [110] J. W. Miller, A. Smith, A. M. Troen, J. B. Mason, P. F. Jacques and J. Selhub, “Excess folic acid and vitamin B12 deficiency: clinical implications?”, Food and Nutrition Bulletin, vol. 45, no. 1, pp. 67-72, 2024.
- [111] F. Hadtstein and M. Vrolijk, “Vitamin B6 induced neuropathy: exploring the mechanisms of pyridoxine toxicity” Advances in Nutrition, vol. 12, no. 5, pp. 1911-1929, 2021.