BibTex RIS Cite

6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ

Year 2017, Volume: 26 Issue: 1, 24 - 28, 01.03.2017

Abstract

Çalışmamızda A549 küçük hücreli olmayan akciğer kanseri hücrelerinde Zingiber officinale’de bulunan 6- gingerol ile 6-shogaolün antikanser etkileri canlılık üzerinden araştırılmıştır. Deneyler hem IL-1β’ ya maruz
kalan hem de maruz kalmayan hücrelerde yürütüldü.
Curcuma longa’ da bulunan kurkumin bilinen doğal bir
antikanser molekül olduğundan çalışmada pozitif kontrol olarak kullanıldı ve kurkumine yapıca benzer olan 6
-gingerol ile 6-shogaolün canlılık üzerine olan etkileri
kurkuminle kıyaslandı. MTT (3-(4,5-dimetiltiazol-2-il)- 2,5-difenil tetrazolyum bromür) deneyleri öncelikle 6- gingerol ve 6-shogaolün birbirini logaritmik şekilde
seyreden konsantrasyonlarında yapıldı. Daha sonra etki
görülen konsantrasyon aralığını kapsayacak şekilde IC50 değerini belirlemek için deneyler tekrarlandı. Sonuç
olarak 6-shogaolun 24 sa IC50 değeri IL-β’ ya maruz kalmayan hücrelerde 62,5 μM; IL-β’ ya maruz kalan hücrelerde ise 63,2 μM olarak bulundu. Kurkumin 100 μM
konsantrasyonu ile kıyaslandığında 6-shogaolün daha
önceden antikanser özelliği gösterilmiş olan kurkumin
kadar etkin olduğu görülürken; 6-gingerol için canlılığı
azaltıcı yönde bir bulguya rastlanmadı. 6-shogaol’ un
canlılığı azaltıcı etkisinin altında yatan moleküler
mekanizmalar araştırılmaya değerdir.

References

  • Rang H P, Dale M M, Ritter J M, Flower R J. Drugs used for the treatment of infections, cancer and immunological disorders, Anticancer drugs, In: Rang and Dale’s Pharmacology (7th ed), Elsevier Churchill Livingstone, Spain, 2012: p 673-687.
  • IARC Press Release, Latest world cancer statistics, World Health Organization Report No223, France, 2013: p 1-3.
  • Kayaalp O. Kanser Kemoterapisinin Esasları ve Antineoplastik İlaçlar, In: Rasyonel Tedavi Yönünden Tıbbi Farmakoloji (12. baskı), Pelikan Yayıncılık, Ankara, 2009: p 315-342.
  • Celis E J. Cytotoxicity and Cell Growth Assays. In: Cell Biology A Laboratory Handbook (3rd ed), Elsevier Academic Press, 2006: s 315-324.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
  • Riss T L, Moravec R A, Niles A L, et al. Cell Viability Assays. In: Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences 2013; s e- kitap.
  • Koeberle A, Northoff H, Werz O. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol Cancer Ther 2009; 8(8): 2348-2355.
  • Gruenwald J, Brendler T, Jaenicke C, et al. PDR for Herbal Medicines. E-PDR Medical Economics Company 2000: p 339-342.
  • Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem Toxicol 2007; 45: 683-690.
  • Koeberlea A, Haberlb E-M, Rossic A, et al. Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E2 synthase-1. Bioorg Med Chem Lett 2009; 17(23): 7924-7932
  • Bia X, Xiaa X, Mou T, et al. Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/β-catenin signaling inhibition. Eur J Pharmacol 2014: 742; 145-152.
  • Shiroa T, Takahashia H, Kakiguchi K, et al. Synthesis and SAR study of imidazoquinolines as a novel structural class of microsomal prostaglandin E2 synthase-1 inhibitors. Bioorg Med Chem Lett 2012; 22(1): 285-288.
  • Li Y Q, Yin S M, Nie D N, et al. MK886 inhibits the proliferation of HL-60 leukemia cells by suppressing the expression of mPGES-1 and reducing prostaglandin E2 synthesis. Int J Hematol 2011; 94: 472 -478.
  • Staffan T, Jakobsson P J. Coordinate up- and down- regulation of glutathione dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells Inhibition by NS-398 and leukotriene C. Eur J Biochem 2000; 267: 6428-6434.
  • Jakobsson P J, Thore´N S, Morgenstern R, et al. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Biochemistry 1999; 96: 7220-7225.
  • Price P, McMillan T J. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Research 1990; 50: 1392-1396
  • American botanical council. Therapeutic Guide To Herbal Medicines, Commission E Monographs 1999; p: Turmeric root chapter.
  • Chen Q, Wang Y, Xu K, et al. Curcumin induces apoptosis in human lung adenocarcinoma A549 cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Oncol Rep 2010; 23(2): 397-403.
  • Yin H, Guo R, Xu Y, et al. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer. Acta Biochim Biophys Sin 2012; 44: 147– 153.
  • Zhu y, Warin R F, Soroka D N, et al. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation. Plos One 2013; 8 (1): 1-13.
  • Ishiguroa K, Andob T, Maedab O, et al. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem Bioph Res Co 2007 ; 362 (1): 218-223.
  • H Ling, H Yang, S-H Tan, et al. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kB activation. Brit J Pharmacol 2010; 161: 1763-1777.
  • Hsy Y L, Hung J Y, Tsai Y M, et al. 6‑Shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of cc-chemokine ligand 2 (ccl2) in tumor-associated dendritic cells. J Agric Food Chem 2015: 63; 1730-1738.

Effects of 6-Shogaol, 6-Gingerol and Curcumin on Cell Viability in A549 Cancer Cell Line

Year 2017, Volume: 26 Issue: 1, 24 - 28, 01.03.2017

Abstract

In our study we investigated anticancer effects of 6- gingerol and 6-shogaol from Zingiber officinale. Anticancer effect was monitored by using cell viability assay.
Experiments are performed on both A549 cells that are
incubated with IL-1β (interleukin 1 β) and cells which
are not incubated with it. Curcumin from Curcuma
longa, a natural compound that is known for its anticancer effect, is used as a positive control and effects of 6- gingerol and 6-shogaol are compared with it. MTT (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay was performed for wide range concentrations. Concentration changes were 10 fold. To obtain
IC50 values of 6-shogol and 6-gingerol, MTT assays were
performed again, using the previous concentrations but
in a narrower range.According to the assays 6-shogaol’s
24 h IC50 determined as 62,5 μM for A549 cells which
were not incubated with IL-1β and 63,2 μM for the cells
which were exposed to IL-1β. 6-shogaol’s cytotoxic effect was as much as curcumin which is a known natural
anticancer molecule, while 6-gingerol did not show any
effect towards decreasing the cell viability. Mechanisms
which underly 6-shogoal’s cytotoxic effect are worth for
further investigation.

References

  • Rang H P, Dale M M, Ritter J M, Flower R J. Drugs used for the treatment of infections, cancer and immunological disorders, Anticancer drugs, In: Rang and Dale’s Pharmacology (7th ed), Elsevier Churchill Livingstone, Spain, 2012: p 673-687.
  • IARC Press Release, Latest world cancer statistics, World Health Organization Report No223, France, 2013: p 1-3.
  • Kayaalp O. Kanser Kemoterapisinin Esasları ve Antineoplastik İlaçlar, In: Rasyonel Tedavi Yönünden Tıbbi Farmakoloji (12. baskı), Pelikan Yayıncılık, Ankara, 2009: p 315-342.
  • Celis E J. Cytotoxicity and Cell Growth Assays. In: Cell Biology A Laboratory Handbook (3rd ed), Elsevier Academic Press, 2006: s 315-324.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
  • Riss T L, Moravec R A, Niles A L, et al. Cell Viability Assays. In: Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences 2013; s e- kitap.
  • Koeberle A, Northoff H, Werz O. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol Cancer Ther 2009; 8(8): 2348-2355.
  • Gruenwald J, Brendler T, Jaenicke C, et al. PDR for Herbal Medicines. E-PDR Medical Economics Company 2000: p 339-342.
  • Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem Toxicol 2007; 45: 683-690.
  • Koeberlea A, Haberlb E-M, Rossic A, et al. Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E2 synthase-1. Bioorg Med Chem Lett 2009; 17(23): 7924-7932
  • Bia X, Xiaa X, Mou T, et al. Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/β-catenin signaling inhibition. Eur J Pharmacol 2014: 742; 145-152.
  • Shiroa T, Takahashia H, Kakiguchi K, et al. Synthesis and SAR study of imidazoquinolines as a novel structural class of microsomal prostaglandin E2 synthase-1 inhibitors. Bioorg Med Chem Lett 2012; 22(1): 285-288.
  • Li Y Q, Yin S M, Nie D N, et al. MK886 inhibits the proliferation of HL-60 leukemia cells by suppressing the expression of mPGES-1 and reducing prostaglandin E2 synthesis. Int J Hematol 2011; 94: 472 -478.
  • Staffan T, Jakobsson P J. Coordinate up- and down- regulation of glutathione dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells Inhibition by NS-398 and leukotriene C. Eur J Biochem 2000; 267: 6428-6434.
  • Jakobsson P J, Thore´N S, Morgenstern R, et al. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Biochemistry 1999; 96: 7220-7225.
  • Price P, McMillan T J. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Research 1990; 50: 1392-1396
  • American botanical council. Therapeutic Guide To Herbal Medicines, Commission E Monographs 1999; p: Turmeric root chapter.
  • Chen Q, Wang Y, Xu K, et al. Curcumin induces apoptosis in human lung adenocarcinoma A549 cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Oncol Rep 2010; 23(2): 397-403.
  • Yin H, Guo R, Xu Y, et al. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer. Acta Biochim Biophys Sin 2012; 44: 147– 153.
  • Zhu y, Warin R F, Soroka D N, et al. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation. Plos One 2013; 8 (1): 1-13.
  • Ishiguroa K, Andob T, Maedab O, et al. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem Bioph Res Co 2007 ; 362 (1): 218-223.
  • H Ling, H Yang, S-H Tan, et al. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kB activation. Brit J Pharmacol 2010; 161: 1763-1777.
  • Hsy Y L, Hung J Y, Tsai Y M, et al. 6‑Shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of cc-chemokine ligand 2 (ccl2) in tumor-associated dendritic cells. J Agric Food Chem 2015: 63; 1730-1738.
There are 23 citations in total.

Details

Other ID JA98FD64HA
Journal Section Research Article
Authors

Eren Demirpolat This is me

Mükerrem Betül Yerer Aycan This is me

Publication Date March 1, 2017
Submission Date March 1, 2017
Published in Issue Year 2017 Volume: 26 Issue: 1

Cite

APA Demirpolat, E., & Yerer Aycan, M. B. (2017). 6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ. Sağlık Bilimleri Dergisi, 26(1), 24-28.
AMA Demirpolat E, Yerer Aycan MB. 6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ. JHS. March 2017;26(1):24-28.
Chicago Demirpolat, Eren, and Mükerrem Betül Yerer Aycan. “6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ”. Sağlık Bilimleri Dergisi 26, no. 1 (March 2017): 24-28.
EndNote Demirpolat E, Yerer Aycan MB (March 1, 2017) 6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ. Sağlık Bilimleri Dergisi 26 1 24–28.
IEEE E. Demirpolat and M. B. Yerer Aycan, “6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ”, JHS, vol. 26, no. 1, pp. 24–28, 2017.
ISNAD Demirpolat, Eren - Yerer Aycan, Mükerrem Betül. “6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ”. Sağlık Bilimleri Dergisi 26/1 (March 2017), 24-28.
JAMA Demirpolat E, Yerer Aycan MB. 6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ. JHS. 2017;26:24–28.
MLA Demirpolat, Eren and Mükerrem Betül Yerer Aycan. “6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ”. Sağlık Bilimleri Dergisi, vol. 26, no. 1, 2017, pp. 24-28.
Vancouver Demirpolat E, Yerer Aycan MB. 6-SHOGAOL, 6-GİNGEROL VE KURKUMİN’ İN A549 HÜCRELERİNDE CANLILIK ÜZERİNE ETKİLERİ. JHS. 2017;26(1):24-8.