BibTex RIS Cite

MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ ve NANOTEKNOLOJİK YAKLAŞIMLAR

Year 2017, Volume: 26 Issue: 3, 262 - 266, 01.12.2017

Abstract

Biyofilm, mikroorganizmalar tarafından oluşturulan, herhangi bir yüzeye yapışmalarını sağlayan ve eksopolisakkarit matriks ile çevrilmiş topluluklardır. Biyofilm yapısı canlı ve cansız pek çok yüzeyde bulunabilir. Onları klasik yöntemlerle tamamen yok etmenin mümkün olmadığı bilinmektedir. Modern tıbbın biyofilm enfeksiyonları ile yüzyüze gelmeye başlaması, antibiyotiklere karşı dirençli bakteri topluluğunun artması ve böylece geleneksel antibiyotik tedavilerinin etkinliğinin azalması gibi konular, bilimi ve endüstriyi bu problemi çözmeye ve önlemeye yönelik alternatif yollar bulmaya çağırmaktadır. Bu yüzden yeni antibiyofilm stratejilerle bu alanda yapılan araştırmalar hızla artmaktadır. Son yıllarda materyal bilimi ve biyolojiyi birleştiren bir alan olan nanoteknoloji bilimindeki ilerlemeler, bize antimikrobiyal ve antibiyofilm özellikteki nanopartiküllerin kullanımını işaret etmektedir. Bu amaçla, antimikrobiyal, antibiyofilm ve antiadheziv özelliklere sahip metal, metal oksit nanopartiküller ve doğal bir biyopolimer olan kitosan nanopartiküller, çeşitli çalışmalarda biyofilm oluşumuna karşı yaygın olarak kullanılmaya başlanmıştır. Bu çalışmada, yeni antibiyofilm biyofilmlere karşı nanoteknolojik yaklaşımlar da sunulacaktır.stratejilerin yanısıra mikrobiyal

References

  • Balban N, Giacometti A, Cirioni O, et al. Use of the quorum-sensing inhibitor RNA-III inhibiting peptide to prevent biofilm formation in vivo by drug resistant Staphylococcus epidemidis. J Infect Dis 2003; 187:625–630. 8. Pires D, Sillankorva S, Faustino A, et al. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol 2011; 162:798-806. 9. Kaplan JB. Biofilm dispersal: Mechanisms, clinical ımplications, and potential therapeutic uses. J Dental Res 2010; 89:205-218.
  • Alipour M, Suntres ZE, Omri A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 2009; 64:317-325.
  • bonding. A prospective, randomized controlled trial. ; 265:2364-2368. Jama
  • http://www.asph.sc.edu/enhs/decho/ nanoenviro.htm Erişim Tarihi: 12 Aralık 2016
  • Sawai J. Quantitative evaluation of antibacterial activities of metallic oxidepowders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 2003; 54:177-182.
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012; 30:499-501.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gramnegative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73:712-720.
  • Stoimenov PK, Klinger RL, Marchin GL, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18:6679-6686.
  • Roselli M, Finamore A, Garaguso I, et al. Zinc oxide protects cultured enterocytes from the damage induced by E. coli. J Nutr 2003; 133:4077-4082.
  • Brayner R, Ferrari-Iliou R, Brivois N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 2006; 6(4):866–870.
  • Martinez-Gutierrez F, Boegli L, Agostinho A, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 2013; 29 (6):651-660.
  • Anasri MA, Khan MA, Khan AA, et al. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol 2015; 33:101-109.
  • Loo CY, Rohanizadeh R, Young PM, et al. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem 2016; 64:2513-2522.
  • Shakibaie M, Forootanfar H, Golkari Y, et al. Anti- biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol 2015; 29:235-241.
  • Sathyanarayanan MB, Balachandranath R, Srinivasulu YG, et al. The effect of gold and ıron oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol 2013; 272086.
  • Forier K, Raemdonck K, Smedt SC, et al. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 2014; 190:607 -623.
  • Maki DG, Mermel LA. Infections due to infusion therapy. In: Bennett, J Brachman P (eds), Hospital infections. Lippincott-Raven Philadelphia 1998; pp 689-724.
  • Kong M, Chen XG, Xıng K, Park HJ. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J Food Microbiol 2010; 144:51-63.
  • Acar Doğanlı G. Medikal İmplantlarda Biyofilm Oluşumu. Tıp Teknolojileri Ulusal Dergisi 2015; 459-462.
  • Rabin N, Zheng Y, Opoku-Temeng C, et al. Agents that inhibit bacterial biofilm formation. Future Med Chem 2015; 5:647-671.

New Antibiofilm Strategies and Nanotechnological Approaches against Microbial Biofilms

Year 2017, Volume: 26 Issue: 3, 262 - 266, 01.12.2017

Abstract

A biofilm is a community of microorganisms encased within an exopolysaccharide matrix attached to a surface. Biofilm structures can be found in many surfaces that are alive or inanimate. It is known that conventional methods are inefficient to destroy them completely. In modern medicine, the number of infections related with antibiotic-resistant bacteria has increased and microorganisms growing in biofilms induce many of them. When effectiveness of conventional antibiotics is decreased, there is an urgent need to develop alternative ways to solve and prevent these problems via science and industry. Therefore, the researchs done in this area with new antibiofilm strategies are increasing rapidly. Recently, advances in nanotechnology is an area that combines material science and biology points out that the utilization of antimicrobial and antibiofilm activities of nanoparticles.For this purpose, metal, metal oxide, nanoparticles with antimicrobial features, kitosan nanoparticles-natural biopolimers have been used widely against biofilm formation in several studies. In this study, along with the new antibiofilm strategies, nanotechnological approaches against microbial biofilms will be presented

References

  • Balban N, Giacometti A, Cirioni O, et al. Use of the quorum-sensing inhibitor RNA-III inhibiting peptide to prevent biofilm formation in vivo by drug resistant Staphylococcus epidemidis. J Infect Dis 2003; 187:625–630. 8. Pires D, Sillankorva S, Faustino A, et al. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol 2011; 162:798-806. 9. Kaplan JB. Biofilm dispersal: Mechanisms, clinical ımplications, and potential therapeutic uses. J Dental Res 2010; 89:205-218.
  • Alipour M, Suntres ZE, Omri A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 2009; 64:317-325.
  • bonding. A prospective, randomized controlled trial. ; 265:2364-2368. Jama
  • http://www.asph.sc.edu/enhs/decho/ nanoenviro.htm Erişim Tarihi: 12 Aralık 2016
  • Sawai J. Quantitative evaluation of antibacterial activities of metallic oxidepowders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 2003; 54:177-182.
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012; 30:499-501.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gramnegative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73:712-720.
  • Stoimenov PK, Klinger RL, Marchin GL, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18:6679-6686.
  • Roselli M, Finamore A, Garaguso I, et al. Zinc oxide protects cultured enterocytes from the damage induced by E. coli. J Nutr 2003; 133:4077-4082.
  • Brayner R, Ferrari-Iliou R, Brivois N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 2006; 6(4):866–870.
  • Martinez-Gutierrez F, Boegli L, Agostinho A, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 2013; 29 (6):651-660.
  • Anasri MA, Khan MA, Khan AA, et al. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol 2015; 33:101-109.
  • Loo CY, Rohanizadeh R, Young PM, et al. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem 2016; 64:2513-2522.
  • Shakibaie M, Forootanfar H, Golkari Y, et al. Anti- biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol 2015; 29:235-241.
  • Sathyanarayanan MB, Balachandranath R, Srinivasulu YG, et al. The effect of gold and ıron oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol 2013; 272086.
  • Forier K, Raemdonck K, Smedt SC, et al. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 2014; 190:607 -623.
  • Maki DG, Mermel LA. Infections due to infusion therapy. In: Bennett, J Brachman P (eds), Hospital infections. Lippincott-Raven Philadelphia 1998; pp 689-724.
  • Kong M, Chen XG, Xıng K, Park HJ. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J Food Microbiol 2010; 144:51-63.
  • Acar Doğanlı G. Medikal İmplantlarda Biyofilm Oluşumu. Tıp Teknolojileri Ulusal Dergisi 2015; 459-462.
  • Rabin N, Zheng Y, Opoku-Temeng C, et al. Agents that inhibit bacterial biofilm formation. Future Med Chem 2015; 5:647-671.
There are 20 citations in total.

Details

Other ID JA37GB94GJ
Journal Section Research Article
Authors

Dilşad Onbaşlı This is me

Gökçen Yuvali Çelik This is me

Aysun Ökçesiz This is me

Publication Date December 1, 2017
Submission Date December 1, 2017
Published in Issue Year 2017 Volume: 26 Issue: 3

Cite

APA Onbaşlı, D., Çelik, G. Y., & Ökçesiz, A. (2017). MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ ve NANOTEKNOLOJİK YAKLAŞIMLAR. Sağlık Bilimleri Dergisi, 26(3), 262-266.
AMA Onbaşlı D, Çelik GY, Ökçesiz A. MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ ve NANOTEKNOLOJİK YAKLAŞIMLAR. JHS. December 2017;26(3):262-266.
Chicago Onbaşlı, Dilşad, Gökçen Yuvali Çelik, and Aysun Ökçesiz. “MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ Ve NANOTEKNOLOJİK YAKLAŞIMLAR”. Sağlık Bilimleri Dergisi 26, no. 3 (December 2017): 262-66.
EndNote Onbaşlı D, Çelik GY, Ökçesiz A (December 1, 2017) MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ ve NANOTEKNOLOJİK YAKLAŞIMLAR. Sağlık Bilimleri Dergisi 26 3 262–266.
IEEE D. Onbaşlı, G. Y. Çelik, and A. Ökçesiz, “MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ ve NANOTEKNOLOJİK YAKLAŞIMLAR”, JHS, vol. 26, no. 3, pp. 262–266, 2017.
ISNAD Onbaşlı, Dilşad et al. “MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ Ve NANOTEKNOLOJİK YAKLAŞIMLAR”. Sağlık Bilimleri Dergisi 26/3 (December 2017), 262-266.
JAMA Onbaşlı D, Çelik GY, Ökçesiz A. MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ ve NANOTEKNOLOJİK YAKLAŞIMLAR. JHS. 2017;26:262–266.
MLA Onbaşlı, Dilşad et al. “MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ Ve NANOTEKNOLOJİK YAKLAŞIMLAR”. Sağlık Bilimleri Dergisi, vol. 26, no. 3, 2017, pp. 262-6.
Vancouver Onbaşlı D, Çelik GY, Ökçesiz A. MİKROBİYAL BİYOFİLMLERE KARŞI YENİ ANTİBİYOFİLM STRATEJİLERİ ve NANOTEKNOLOJİK YAKLAŞIMLAR. JHS. 2017;26(3):262-6.