Review
BibTex RIS Cite

HIGH-FREQUENCY AND LOW-MAGNITUDE MECHANICAL VIBRATION STIMULI

Year 2021, Volume: 30 Issue: 2, 204 - 208, 15.09.2021
https://doi.org/10.34108/eujhs.737948

Abstract

Mechanical vibration has begun to acquire application fields in various ways in dentistry and orthodontic practice in addition to being used in the medical field. With the start of research into vibration application in the field of dentistry, it has been the research topic for preclinical and clinical studies in many areas such as relieving pain, accelerating bone healing, reducing bone resorption and increasing bone apposition, accelerating orthodontic tooth movement, reducing orthodontically induced root resorption. The findings from these studies indicate that with mechanical vibration applications the treatmentprocess can be shortened, the side effects occurring during the treatment process can be reduced, and the success of the treatments can be increased by increasing patient comfortand cooperation. In this review, mechanical vibration applications that can be used in dentistry and orthodonticpractice arediscussed in various aspects.

References

  • 1. Singiresu SR. Mechanical vibrations (5th ed). Addison Wesley 1995; pp 13-6.
  • 2. Cardinale M, Wakeling J. Whole body vibration exercise: are vibrations good for you? British journal of sports medicine 2005; 39(9):585-589.
  • 3. Rauch F. Vibration therapy. Developmental Medicine & Child Neurology 2009; 51:166-816.
  • 4. Bagheri J. Application of Whole-body Vibration: Technical and clinical studies in healthy persons and people with a neurological disorder: Erasmus MC: University Medical Center Rotterdam; 2013.
  • 5. Kaeding TS. The Historical Evolution of the Therapeutic Application of Whole Body Vibrations: Any Lessons to be Learned? Austin Sports Med 2016; 1(1):1003.
  • 6. Fredericks DC, Nepola JV, Baker JT, Abbott J, Simon B. Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J Orthop Trauma 2000; 14(2):93-100.
  • 7. Leung KS, Shi HF, Cheung WH, Qin L, Ng WK, Tam KF, et al. Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J Orthop Res 2009; 27(4):458-465.
  • 8. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006; 21(9):1464-1474.
  • 9. Stewart JM, Karman C, Montgomery LD, McLeod KJ. Plantar vibration improves leg fluid flow in perimenopausal women. Am J Physiol Regul Integr Comp Physiol 2005; 288(3): 623-629.
  • 10. Cheung WH, Mok HW, Qin L, Sze PC, Lee KM, Leung KS. High-frequency whole-body vibration improves balancing ability in elderly women. Arch Phys Med Rehabil 2007; 88(7):852-857.
  • 11. Graber LW, Vanarsdall RL, Vig KW, Huang GJ. Orthodontics-E-Book: current principles and techniques: Elsevier Health Sciences; 2016.
  • 12. Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound Med Biol 1988 ;14(6):499-506.
  • 13. Sachs F. Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem 1991 ;104:57-60.
  • 14. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993 ;260(5111):1124-1127.
  • 15. Li JK, Chang WH, Lin JC, Ruaan RC, Liu HC, Sun JS. Cytokine release from osteoblasts in response to ultrasound stimulation. Biomaterials 2003 ;24(13):2379-2385.
  • 16. Sun JS, Hong RC, Chang WH, Chen LT, Lin FH, Liu HC. In vitro effects of low-intensity ultrasound stimulation on the bone cells. J Biomed Mater Res 2001; 57(3):449-456.
  • 17. Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 2007; 40(6):1333-1339.
  • 18. Kulkarni RN, Voglewede PA, Liu D. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells. Bone 2013; 57(2):493-498.
  • 19. Wu SH, Zhong ZM, Chen JT. Low-magnitude high-frequency vibration inhibits RANKL-induced osteoclast differentiation of RAW264.7 cells. Int J Med Sci 2012; 9(9):801-807.
  • 20. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature 2001; 412(6847):603-604.
  • 21. Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 2006; 39(5):1059-1066.
  • 22. Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int 1992; 50(4):306-313.
  • 23. Chesky KS, Michel DE. The Music Vibration Table (MVT™): Developing a technology and conceptual model for pain relief. Music Therapy Perspectives 1991 ;9(1):32-38.
  • 24. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971-979.
  • 25. Hollins M, McDermott K, Harper D. How does vibration reduce pain? Perception 2014; 43(1):70-84.
  • 26. Roy EA, Hollins M, Maixner W. Reduction of TMD pain by high-frequency vibration: a spatial and temporal analysis. Pain 2003; 101(3):267-274.
  • 27. Thompson WR, Yen SS, Rubin J. Vibration therapy: clinical applications in bone. Curr Opin Endocrinol Diabetes Obes 2014; 21(6):447-453.
  • 28. Bautmans I, Van Hees E, Lemper JC, Mets T. The feasibility of Whole Body Vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial. BMC Geriatr 2005; 5:17.
  • 29. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004; 19(3):343-351.
  • 30. Rubin C, Judex S, Qin YX. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing 2006; 35 Suppl 2:32-36.
  • 31. Gauthier BJ. The effects of mechanical vibration on human chondrocytes in vitro. PhD Thesis, Marquette University; 2016.
  • 32. Veqar Z, Imtiyaz S. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS). J Clin Diagn Res 2014; 8(6): 1-4.
  • 33. Wheeler AA, Jacobson BH. Effect of whole-body vibration on delayed onset muscular soreness, flexibility, and power. J Strength Cond Res 2013; 27(9):2527-2532.
  • 34. Nanitsos E, Vartuli R, Forte A, Dennison PJ, Peck CC. The effect of vibration on pain during local anaesthesia injections. Aust Dent J 2009; 54(2):94-100.
  • 35. Ottoson D, Ekblom A, Hansson P. Vibratory stimulation for the relief of pain of dental origin. Pain 1981; 10(1):37-45.
  • 36. Ogawa T, Possemiers T, Zhang X, Naert I, Chaudhari A, Sasaki K, et al. Influence of whole-body vibration time on peri-implant bone healing: a histomorphometrical animal study. J Clin Periodontol 2011; 38(2):180-185.
  • 37. Kono T, Ayukawa Y, Moriyama Y, Kurata K, Takamatsu H, Koyano K. The effect of low-magnitude, high-frequency vibration stimuli on the bone healing of rat incisor extraction socket. J Biomech Eng 2012; 134(9):91001.
  • 38. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 2008; 133(4):572-583.
  • 39. Marie SS, Powers M, Sheridan JJ. Vibratory stimulation as a method of reducing pain after orthodontic appliance adjustment. J Clin Orthod 2003; 37(4):205-8; quiz 3-4.
  • 40. Proffit WR, Fields Jr HW, Sarver DM. Contemporary Orthodontics, 5e: Elsevier India; 2012.
  • 41. Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. Effect of low-frequency mechanical vibration on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2015; 148(3):440-449.
  • 42. Kalajzic Z, Peluso EB, Utreja A, Dyment N, Nihara J, Xu M, et al. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement. Angle Orthod 2014; 84(2):297-303.
  • 43. Miles P, Smith H, Weyant R, Rinchuse DJ. The effects of a vibrational appliance on tooth movement and patient discomfort: a prospective randomised clinical trial. Aust Orthod J 2012; 28(2):213-218.
  • 44. Grove J. The Effect Of Mechanical Vibration (113 Hz Applied to Maxillary First Premolars) On Root Resorption Associated With Orthodontic Force: A Micro-CT Study 2011.
  • 45. Tan D. The effect of mechanical vibration (Acceledent 30Hz) applied to the hemimaxilla on root resorption and tooth movement after application of orthodontic force. A micro CT study 2011.
  • 46. Seo YJ, Lim BS, Park YG, Yang IH, Ahn SJ, Kim TW, et al. Effect of self-ligating bracket type and vibration on frictional force and stick-slip phenomenon in diverse tooth displacement conditions: an in vitro mechanical analysis. Eur J Orthod 2015; 37(5):474-480.
  • 47. Mao JJ, Wang X, Mooney MP, Kopher RA, Nudera JA. Strain induced osteogenesis of the craniofacial suture upon controlled delivery of low-frequency cyclic forces. Front Biosci 2003; 8: 10-17.
  • 48. Yadav S, Assefnia A, Gupta H, Vishwanath M, Kalajzic Z, Allareddy V, et al. The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model. Eur J Orthod 2016; 38(1):44-50.
  • 49. Sriram D, Jones A, Alatli-Burt I, Darendeliler MA. Effects of mechanical stimuli on adaptive remodeling of condylar cartilage. J Dent Res 2009; 88(5):466-470.
  • 50. Rogers O. The effect of high‐frequency, low magnitude mechanical stimuli on the rat condyle during mandibular protrusion. A micro‐CT study. PhD Thesis, Sydney University, 2010; pp 132-138.

YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI

Year 2021, Volume: 30 Issue: 2, 204 - 208, 15.09.2021
https://doi.org/10.34108/eujhs.737948

Abstract

Mekanik titreşim uygulaması medikal alanda kullanılmasının yanı sıra diş hekimliği ve ortodonti pratiğinde de çeşitli şekillerde uygulama alanları kazanmaya başlamıştır. Titreşim uygulamasının diş hekimliği alanında araştırılmaya başlanmasıyla; ağrının azaltılması, kemik iyileşmesinin hızlandırılması, kemik rezorpsiyonunun azaltılması ve apozisyonunun arttırılması, ortodontik diş hareketinin hızlandırılması, ortodontik olarak indüklenmiş kök rezorpsiyonunun önlenmesi gibi pek çok alanda klinik öncesi ve klinik çalışmalara konu olmuştur. Bu araştırmalar özet olarak, mekanik titreşim uygulamalarıyla tedavi sürecinin kısaltılabileceği, tedavi sürecinde meydana gelen yan etkilerin azaltılabileceği, hasta konforu ve kooperasyonun arttırılarak tedavilerin başarısının arttırılabileceği yönünde bulgular sunmaktadır. Bu derlemede, diş hekimliği ve ortodonti pratiğinde kullanılabilecek mekanik titreşim uygulamaları çeşitli yönleriyle ele alınmıştır.

References

  • 1. Singiresu SR. Mechanical vibrations (5th ed). Addison Wesley 1995; pp 13-6.
  • 2. Cardinale M, Wakeling J. Whole body vibration exercise: are vibrations good for you? British journal of sports medicine 2005; 39(9):585-589.
  • 3. Rauch F. Vibration therapy. Developmental Medicine & Child Neurology 2009; 51:166-816.
  • 4. Bagheri J. Application of Whole-body Vibration: Technical and clinical studies in healthy persons and people with a neurological disorder: Erasmus MC: University Medical Center Rotterdam; 2013.
  • 5. Kaeding TS. The Historical Evolution of the Therapeutic Application of Whole Body Vibrations: Any Lessons to be Learned? Austin Sports Med 2016; 1(1):1003.
  • 6. Fredericks DC, Nepola JV, Baker JT, Abbott J, Simon B. Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J Orthop Trauma 2000; 14(2):93-100.
  • 7. Leung KS, Shi HF, Cheung WH, Qin L, Ng WK, Tam KF, et al. Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J Orthop Res 2009; 27(4):458-465.
  • 8. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006; 21(9):1464-1474.
  • 9. Stewart JM, Karman C, Montgomery LD, McLeod KJ. Plantar vibration improves leg fluid flow in perimenopausal women. Am J Physiol Regul Integr Comp Physiol 2005; 288(3): 623-629.
  • 10. Cheung WH, Mok HW, Qin L, Sze PC, Lee KM, Leung KS. High-frequency whole-body vibration improves balancing ability in elderly women. Arch Phys Med Rehabil 2007; 88(7):852-857.
  • 11. Graber LW, Vanarsdall RL, Vig KW, Huang GJ. Orthodontics-E-Book: current principles and techniques: Elsevier Health Sciences; 2016.
  • 12. Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound Med Biol 1988 ;14(6):499-506.
  • 13. Sachs F. Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem 1991 ;104:57-60.
  • 14. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993 ;260(5111):1124-1127.
  • 15. Li JK, Chang WH, Lin JC, Ruaan RC, Liu HC, Sun JS. Cytokine release from osteoblasts in response to ultrasound stimulation. Biomaterials 2003 ;24(13):2379-2385.
  • 16. Sun JS, Hong RC, Chang WH, Chen LT, Lin FH, Liu HC. In vitro effects of low-intensity ultrasound stimulation on the bone cells. J Biomed Mater Res 2001; 57(3):449-456.
  • 17. Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 2007; 40(6):1333-1339.
  • 18. Kulkarni RN, Voglewede PA, Liu D. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells. Bone 2013; 57(2):493-498.
  • 19. Wu SH, Zhong ZM, Chen JT. Low-magnitude high-frequency vibration inhibits RANKL-induced osteoclast differentiation of RAW264.7 cells. Int J Med Sci 2012; 9(9):801-807.
  • 20. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature 2001; 412(6847):603-604.
  • 21. Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 2006; 39(5):1059-1066.
  • 22. Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int 1992; 50(4):306-313.
  • 23. Chesky KS, Michel DE. The Music Vibration Table (MVT™): Developing a technology and conceptual model for pain relief. Music Therapy Perspectives 1991 ;9(1):32-38.
  • 24. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971-979.
  • 25. Hollins M, McDermott K, Harper D. How does vibration reduce pain? Perception 2014; 43(1):70-84.
  • 26. Roy EA, Hollins M, Maixner W. Reduction of TMD pain by high-frequency vibration: a spatial and temporal analysis. Pain 2003; 101(3):267-274.
  • 27. Thompson WR, Yen SS, Rubin J. Vibration therapy: clinical applications in bone. Curr Opin Endocrinol Diabetes Obes 2014; 21(6):447-453.
  • 28. Bautmans I, Van Hees E, Lemper JC, Mets T. The feasibility of Whole Body Vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial. BMC Geriatr 2005; 5:17.
  • 29. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004; 19(3):343-351.
  • 30. Rubin C, Judex S, Qin YX. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing 2006; 35 Suppl 2:32-36.
  • 31. Gauthier BJ. The effects of mechanical vibration on human chondrocytes in vitro. PhD Thesis, Marquette University; 2016.
  • 32. Veqar Z, Imtiyaz S. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS). J Clin Diagn Res 2014; 8(6): 1-4.
  • 33. Wheeler AA, Jacobson BH. Effect of whole-body vibration on delayed onset muscular soreness, flexibility, and power. J Strength Cond Res 2013; 27(9):2527-2532.
  • 34. Nanitsos E, Vartuli R, Forte A, Dennison PJ, Peck CC. The effect of vibration on pain during local anaesthesia injections. Aust Dent J 2009; 54(2):94-100.
  • 35. Ottoson D, Ekblom A, Hansson P. Vibratory stimulation for the relief of pain of dental origin. Pain 1981; 10(1):37-45.
  • 36. Ogawa T, Possemiers T, Zhang X, Naert I, Chaudhari A, Sasaki K, et al. Influence of whole-body vibration time on peri-implant bone healing: a histomorphometrical animal study. J Clin Periodontol 2011; 38(2):180-185.
  • 37. Kono T, Ayukawa Y, Moriyama Y, Kurata K, Takamatsu H, Koyano K. The effect of low-magnitude, high-frequency vibration stimuli on the bone healing of rat incisor extraction socket. J Biomech Eng 2012; 134(9):91001.
  • 38. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 2008; 133(4):572-583.
  • 39. Marie SS, Powers M, Sheridan JJ. Vibratory stimulation as a method of reducing pain after orthodontic appliance adjustment. J Clin Orthod 2003; 37(4):205-8; quiz 3-4.
  • 40. Proffit WR, Fields Jr HW, Sarver DM. Contemporary Orthodontics, 5e: Elsevier India; 2012.
  • 41. Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. Effect of low-frequency mechanical vibration on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2015; 148(3):440-449.
  • 42. Kalajzic Z, Peluso EB, Utreja A, Dyment N, Nihara J, Xu M, et al. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement. Angle Orthod 2014; 84(2):297-303.
  • 43. Miles P, Smith H, Weyant R, Rinchuse DJ. The effects of a vibrational appliance on tooth movement and patient discomfort: a prospective randomised clinical trial. Aust Orthod J 2012; 28(2):213-218.
  • 44. Grove J. The Effect Of Mechanical Vibration (113 Hz Applied to Maxillary First Premolars) On Root Resorption Associated With Orthodontic Force: A Micro-CT Study 2011.
  • 45. Tan D. The effect of mechanical vibration (Acceledent 30Hz) applied to the hemimaxilla on root resorption and tooth movement after application of orthodontic force. A micro CT study 2011.
  • 46. Seo YJ, Lim BS, Park YG, Yang IH, Ahn SJ, Kim TW, et al. Effect of self-ligating bracket type and vibration on frictional force and stick-slip phenomenon in diverse tooth displacement conditions: an in vitro mechanical analysis. Eur J Orthod 2015; 37(5):474-480.
  • 47. Mao JJ, Wang X, Mooney MP, Kopher RA, Nudera JA. Strain induced osteogenesis of the craniofacial suture upon controlled delivery of low-frequency cyclic forces. Front Biosci 2003; 8: 10-17.
  • 48. Yadav S, Assefnia A, Gupta H, Vishwanath M, Kalajzic Z, Allareddy V, et al. The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model. Eur J Orthod 2016; 38(1):44-50.
  • 49. Sriram D, Jones A, Alatli-Burt I, Darendeliler MA. Effects of mechanical stimuli on adaptive remodeling of condylar cartilage. J Dent Res 2009; 88(5):466-470.
  • 50. Rogers O. The effect of high‐frequency, low magnitude mechanical stimuli on the rat condyle during mandibular protrusion. A micro‐CT study. PhD Thesis, Sydney University, 2010; pp 132-138.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Collection
Authors

Zeynep Hacıoğlu This is me 0000-0003-2520-0247

Nisa Gul Amuk 0000-0002-3752-7100

Publication Date September 15, 2021
Submission Date May 15, 2020
Published in Issue Year 2021 Volume: 30 Issue: 2

Cite

APA Hacıoğlu, Z., & Gul Amuk, N. (2021). YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI. Sağlık Bilimleri Dergisi, 30(2), 204-208. https://doi.org/10.34108/eujhs.737948
AMA Hacıoğlu Z, Gul Amuk N. YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI. JHS. September 2021;30(2):204-208. doi:10.34108/eujhs.737948
Chicago Hacıoğlu, Zeynep, and Nisa Gul Amuk. “YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI”. Sağlık Bilimleri Dergisi 30, no. 2 (September 2021): 204-8. https://doi.org/10.34108/eujhs.737948.
EndNote Hacıoğlu Z, Gul Amuk N (September 1, 2021) YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI. Sağlık Bilimleri Dergisi 30 2 204–208.
IEEE Z. Hacıoğlu and N. Gul Amuk, “YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI”, JHS, vol. 30, no. 2, pp. 204–208, 2021, doi: 10.34108/eujhs.737948.
ISNAD Hacıoğlu, Zeynep - Gul Amuk, Nisa. “YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI”. Sağlık Bilimleri Dergisi 30/2 (September 2021), 204-208. https://doi.org/10.34108/eujhs.737948.
JAMA Hacıoğlu Z, Gul Amuk N. YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI. JHS. 2021;30:204–208.
MLA Hacıoğlu, Zeynep and Nisa Gul Amuk. “YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI”. Sağlık Bilimleri Dergisi, vol. 30, no. 2, 2021, pp. 204-8, doi:10.34108/eujhs.737948.
Vancouver Hacıoğlu Z, Gul Amuk N. YÜKSEK FREKANS VE DÜŞÜK MAGNİTÜDLÜ MEKANİK TİTREŞİM UYGULAMALARI. JHS. 2021;30(2):204-8.