Research Article
BibTex RIS Cite

ALCEA CALVERTII BOİSS.’İN UÇUCU BİLEŞENLERİNİN ANALİZİ ANTİMİKROBİYAL, ANTİKOLİNESTERAZ VE ANTİTİROZİNAZ ETKİSİ

Year 2024, Volume: 33 Issue: 2, 190 - 198, 25.07.2024
https://doi.org/10.34108/eujhs.1384325

Abstract

Bu araştırmanın amacı Türkiye için endemic bir tür olan Alceacalvertii Boiss’in uçucu bileşenlerin SPME-GC-MS kullanılarak analiz edilmesi ve bitkinin methanol ekstresinin antikolinesteraz, antitirozinaz ve antimikrobiyal potansiyelinin belirlenmesidir. Türün tirozinaz, asetilkolinesteraz ve bütirilkolinesterazin hibitör etkileri spektroskopik teknikle belirlenmiş olup, antimikrobiyal aktivitesi için agar difüzyon yöntemi kullanılmıştır. Çalışma sonucunda terpenler sınıfı ait toplam 18 uçucu bileşen belirlenmiştir. SPME-GC-MS tekniği ile belirlenen uçucu bileşenelerinden o-simen (%10.60) ve seskisinol (%15.55) türün ana uçucu bileşenleri olarak tespit edilmiştir. Candida tropikalis, Escherichia coli, Enterococcus faecalis, Mycobacterium smegmatis, Pseudomonas aeruginosa ve Staphylococcus aureus üzerinde ekstrenin anlamlı antimikrobiyal aktivite gösterdiği gözlemlenmiştir. Antitirozinaz aktivite çalışmaları sonucunda ekstrenin yarı maksimum inhibisyon konsantrasyonu (IC50) değeri 60.12 ± 1.75 µg/mL olarak belirlenmiştir. Bütirilkolinesteraz inhibisyon çalışmalarına göre IC50 değeri 111.54 ± 1.75 µg/mL olarak tespit edilmiştir. Tüm bulgular gözönüne alındığında, türün zengin uçucu bileşen içeriğine sahip olduğu ve ümit verici antimikrobiyal, tirozinazinhibitör ve orta derecede bütirilkolinesteraz inhibitor etkiler gösterdiği, dolayısıyla Alceacalvertii’nin Alzheimer hastalığı için tedavi edici değeri sınırlı olmakla birlikte mikrobiyal, dermatolojik ve gelecek vaat eden doğal ilaç kaynağı olabileceği değerlendirilmiştir.

References

  • Bat Özmatara M. The effect of extraction methods on antioxidant and enzyme inhibitory activities and phytochemical components of Galium aparine L. Trak Univ J Nat Sci. 2021;22(1):17-22.doi:10.23902/trkjnat.772976
  • Korkmaz M, Karakurt E. Medicinal plants sold in Kelkit (Gümüshane) herbalists. J Appl Nat Sci. 2014;18(3):60-80.
  • Shad AA, Shah HU, Bakht J. Ethnobotanical assessment and nutritive potential of wild food plants. J Anim Plant Sci. 2013;23(1):92-97.
  • Dursun BY. Determination of monoamine oxidase inhibitions and antioxidant effects of various herbal teas. Trak Univ J Nat Sci. 2017;18(2):105-113.doi:10.23902/trkjnat.302152
  • Azab A. Alcea: Traditional medicine, current research and future opportunities. Eur Chem Bull. 2016;5(12):505-514.doi:10.17628/ECB.2016.5.505
  • Azaizeh H, Saad B, Khalil K, Said O. The state of the art of traditional Arab herbal medicine in the Eastern region of the Mediterranean: A review. Evid Based Complement Alternat Med. 2006;3(2):229-235. doi:10.1093/ecam/nel034
  • Ali R, Sheikha IA, Jabirb NR, Kamal MA. Comparative review of decade’s research on cholinesterase inhibition. Am J Neuroprot Neuroregen. 2012;4(2):136-144.doi:10.1166/ajnn.2012.1051
  • Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10(6):2440-2475. doi:10.3390/ijms10062440
  • Gholamhoseinian A, Razmi Z. Screening the methanolic extracts of some plants for tyrosinase inhibitory activity. Toxicol Environ Chem. 2012;94(2):310-318.doi:10.1080/02772248.2011.644794
  • Zolghadri S, Bahrami A, Hassan-Khan MT, et al. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):279-309. doi:10.1080/14756366.2018.1545767
  • Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-429.doi:10.1016/j.foodcont.2014.05.047
  • Saeed F, Afzaal M, Tufail T, Ahmad A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. Active Antimicrobial Food Packaging. London: IntechOpen; 2019: 92. doi:10.5772/intechopen.80869
  • Erdoğan EA. Use of plant essential oils and possible genetic effects. Mersin University Faculty of Medicine Lokman Hekim Journal of Medical History and Folkloric Medicine. 2012;2(2):21-24.
  • Gherghel S, Morgan RM, Arrebola-Liébanas J, et al. Development of a HS-SPME/GC–MS method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications. Forensic Sci Int. 2018;290:207-218. doi:10.1016/j.forsciint.2018.07.015
  • Bicchi C, Liberto E, Matteodo M, et al. Quantitative analysis of essential oils: A complex task. Flavour Fragr J. 2008;23:382-391. doi:10.1002/ffj.1905
  • Perez C, Pauli M, Bazerque P. An antibiotic assay by the agar well diffusion method. Acta Biologiae Experimentalis. 1990;15(1):113-115.
  • Masuda T, Yamashita D, Takeda Y, Yonemori S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci Biotechnol Biochem. 2005;69(1):197-201.
  • Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88-90.
  • Carrapiso AI, Ventanas J, García C. Characterization of the most odor-active compounds of Iberian ham headspace. J Agric Food Chem. 2002;50(7):1996-2000. doi:10.1021/jf011094e
  • Gonzalez-Burgos E, Gomez-Serranillos MP. Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem. 2012;19(31):5319-5341.doi:10.2174/092986712803833335
  • Göger G, Akçal Çomoğlu B, Işcan G, Demirci F. Evaluation of anticandidal effects of essential oils of commercial Lavender (Lavandula angustifolia Miller) in combination with ketoconazole againts some Candida strains. Trak Univ J Nat Sci. 2020;21(1):13-19.doi:10.23902/trkjnat.590839
  • Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999;86(6):985-990. doi:10.1046/j.1365-2672.1999.00780.x
  • Ebel R. Terpenes from marine-derived fungi. Mar Drugs. 2010;8(8):2340-2368. doi:10.3390/md8082340
  • Wojtunik-Kulesza, KA, Targowska-Duda K, Klimek K, et al. (2017). Volatile terpenoids as potential drug leads in Alzheimer’s disease. Open Chem. 2017;15(1):332-343.doi:10.1515/chem-2017-0040
  • Hanif M, Mehmood MH, Ishrat G, et al. Pharmacological basis for the medicinal use of Alcea rosea in airways disorders and chemical characterization of its fixed oils through GC-MS. Pak J Pharm Sci. 2019;32(5):2347-2355.
  • Keser S, Keser F, Tekin S, et al. In vitro antiradical, antimicrobial and antiproliferative activities and phytochemical compositions of endemic Alcea calvertii (Boiss) Boiss. flowers. Duzce University Journal of Science and Technology. 2020;8(1):693-701. doi:10.29130/dubited.595147.
  • Khidyrova NK, Rakhmatova MZ, Kukina TP, Shakhidoyatov RK, Shakhidoyatov KM. Polyprenols and triterpenoids from leaves of Alcea nudiflora. Chem Nat Compd. 2012;48(2):180-184.
  • Lee KG, Shibamoto T. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices. J Agric Food Chem. 2002;50(17):4947-4952. doi:10.1021/jf025568
  • Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites. 2019;9(11):258-271. doi:10.3390/metabo9110258
  • Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. Medicinal Plants, 2019;2019:333-359.doi:10.1007/978-3-030-31269-5_15
  • Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Arch. Oral Biol. 2018;88:42-46doi:10.1016/j.archoralbio.2018.01.009
  • Martins CDM, Nascimento EAD, de Morais SA, et al. Chemical constituents and evaluation of antimicrobial and cytotoxic activities of Kielmeyera coriacea Mart. & Zucc. essential oils. Evid Based Complement Alternat Med. 2015;2015:1-9.doi:10.1155/2015/842047
  • Baurin N, Arnoult E, Scior T, Do QT,Bernard P. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharmacol. 2002;82:155-158. doi:10.1016/S0378-8741(02)00174-5
  • Tengamnuay P, Pengrungruangwong K, Pheansri I, Likhitwitayawuid K. Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities. Int J Cosmet Sci. 2006; 28: 269-276.doi:10.1111/j.1467-2494.2006.00339.x
  • Murray A, Faraoni M, Castro M, Alza N, Cavallaro V. Natural AChE Inhibitors from plants and their contribution to Alzheimer’s Disease therapy. Curr Neuropharmacol. 2013;11(4):388-143.doi:10.2174/1570159X11311040004
  • Namjoyan F, Jahangiri A, Azemi ME, Arkian E, Mousavi H. Inhibitory Effects of Physalis alkekengi L., Alcea rosea L., Bunium persicum B. Fedtsch. and Marrubium vulgare L. on mushroom tyrosinase. Jundishapur J Nat Pharm Prod. 2015;10(1):1-6.doi:10.17795/jjnpp-23356
  • Yang, CH, Huang YC, Tsai ML, et al. Inhibition of melanogenesis by β‐caryophyllene from lime mint essential oil in mouse B16 melanoma cells. Int J Cosmet Sci. 2015;37(5):550-554.doi:10.1111/ics.12224
  • Maghsoudi S, Adibi H, Hamzeh M, et al. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivatives. J. Rep. in Pharm. Sci. 2013;2(2):156-164.
  • Samai Z, Toudert N, Djilani SE, et al.Chemical Composition and in vitro Antioxidant, Anti‐Alzheimer, Anti‐Diabetic, Anti‐Tyrosinase, and Antimicrobial Properties of Essential Oils and Extracts Derived from Various Parts of the Algerian Calendula suffruticosa Vahl subsp. boissieri Lanza. Chem. Biodiversity. 2023;20(1):1-10.doi:10.1002/cbdv.202200620
  • Pintatum A, Laphookhieo S. Volatile constituents of Amomum argyrophyllum Ridl. and Amomum dealbatum Roxb. and their antioxidant, tyrosinase inhibitory and cytotoxic activities. Arab. J. Chem. 2022;15(10):1-12.doi:10.1016/j.arabjc.2022.104148
  • José-Rita BJ, Bertin GK, Ibrahime SK, et al. Study of the chemical and in vitro cytotoxic activities of essential oils (EOs) of two plants from the Ivorian flora (Lippia multiflora and Zingiber officinale) and their antiviral activities against non-enveloped viruses. S Afr J Bot. 2022:151;387-393.doi:10.1016/j.sajb.2022.03.053
  • Adewinogo SO, Sharma R, Africa CW, et al. Chemical Study and Comparison of the Biological Activities of the Essential Oils of Helichrysum petiolare, H. cymosum, and H. odoratissimum. Plants. 2022;11(19):1-16.doi:10.3390/plants11192606.

ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY

Year 2024, Volume: 33 Issue: 2, 190 - 198, 25.07.2024
https://doi.org/10.34108/eujhs.1384325

Abstract

The research aimed to analyze the volatile compounds by using SPME-GC-MS and to detect anticholinesterase, antityrosinase, and antimicrobial potential of metanol extract of Alceacalvertii Boiss., an endemic species for Türkiye. The inhibitory effects of tyrosinase, acetylcholinesterase, and butyrylcholinesterase of the plant were determined by spectroscopic technique and the plant’s antimicrobial activity was assessed using the agar diffusion method. A total of 18 volatile compounds were specified belonging to terpenes classes. o-cymene (10.60%) and sesquicineole (15.55%) were detected as major volatile components of the species by the SPME-GC-MS technique. Meaningful antimicrobial activity was observed on Candida tropicalis, Enterococcus faecalis, Escherichia coli, Mycobacterium smegmatis, Staphylococcus aureus, and Pseudomonas aeruginosa. The half maximal inhibitory concentration (IC50) value of the plant was determined 60.12 ± 1.75 μg/mL as a result of tyrosinase assay. IC50 value was found 111.54 ± 1.75 μg/mL, according to butyrylcholinesterase inhibition studies. Considering all the findings, it has been determined that the plant includes diverse volatile compounds and showed promising antimicrobial, tyrosinase inhibitory, and moderate butyrylcholinesterase inhibitory effects so Alceacalvertii may be the up-and-coming source of natural medicine for microbial and dermatological diseases although limited to its effects for Alzheimer's disease.

References

  • Bat Özmatara M. The effect of extraction methods on antioxidant and enzyme inhibitory activities and phytochemical components of Galium aparine L. Trak Univ J Nat Sci. 2021;22(1):17-22.doi:10.23902/trkjnat.772976
  • Korkmaz M, Karakurt E. Medicinal plants sold in Kelkit (Gümüshane) herbalists. J Appl Nat Sci. 2014;18(3):60-80.
  • Shad AA, Shah HU, Bakht J. Ethnobotanical assessment and nutritive potential of wild food plants. J Anim Plant Sci. 2013;23(1):92-97.
  • Dursun BY. Determination of monoamine oxidase inhibitions and antioxidant effects of various herbal teas. Trak Univ J Nat Sci. 2017;18(2):105-113.doi:10.23902/trkjnat.302152
  • Azab A. Alcea: Traditional medicine, current research and future opportunities. Eur Chem Bull. 2016;5(12):505-514.doi:10.17628/ECB.2016.5.505
  • Azaizeh H, Saad B, Khalil K, Said O. The state of the art of traditional Arab herbal medicine in the Eastern region of the Mediterranean: A review. Evid Based Complement Alternat Med. 2006;3(2):229-235. doi:10.1093/ecam/nel034
  • Ali R, Sheikha IA, Jabirb NR, Kamal MA. Comparative review of decade’s research on cholinesterase inhibition. Am J Neuroprot Neuroregen. 2012;4(2):136-144.doi:10.1166/ajnn.2012.1051
  • Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10(6):2440-2475. doi:10.3390/ijms10062440
  • Gholamhoseinian A, Razmi Z. Screening the methanolic extracts of some plants for tyrosinase inhibitory activity. Toxicol Environ Chem. 2012;94(2):310-318.doi:10.1080/02772248.2011.644794
  • Zolghadri S, Bahrami A, Hassan-Khan MT, et al. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):279-309. doi:10.1080/14756366.2018.1545767
  • Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-429.doi:10.1016/j.foodcont.2014.05.047
  • Saeed F, Afzaal M, Tufail T, Ahmad A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. Active Antimicrobial Food Packaging. London: IntechOpen; 2019: 92. doi:10.5772/intechopen.80869
  • Erdoğan EA. Use of plant essential oils and possible genetic effects. Mersin University Faculty of Medicine Lokman Hekim Journal of Medical History and Folkloric Medicine. 2012;2(2):21-24.
  • Gherghel S, Morgan RM, Arrebola-Liébanas J, et al. Development of a HS-SPME/GC–MS method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications. Forensic Sci Int. 2018;290:207-218. doi:10.1016/j.forsciint.2018.07.015
  • Bicchi C, Liberto E, Matteodo M, et al. Quantitative analysis of essential oils: A complex task. Flavour Fragr J. 2008;23:382-391. doi:10.1002/ffj.1905
  • Perez C, Pauli M, Bazerque P. An antibiotic assay by the agar well diffusion method. Acta Biologiae Experimentalis. 1990;15(1):113-115.
  • Masuda T, Yamashita D, Takeda Y, Yonemori S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci Biotechnol Biochem. 2005;69(1):197-201.
  • Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88-90.
  • Carrapiso AI, Ventanas J, García C. Characterization of the most odor-active compounds of Iberian ham headspace. J Agric Food Chem. 2002;50(7):1996-2000. doi:10.1021/jf011094e
  • Gonzalez-Burgos E, Gomez-Serranillos MP. Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem. 2012;19(31):5319-5341.doi:10.2174/092986712803833335
  • Göger G, Akçal Çomoğlu B, Işcan G, Demirci F. Evaluation of anticandidal effects of essential oils of commercial Lavender (Lavandula angustifolia Miller) in combination with ketoconazole againts some Candida strains. Trak Univ J Nat Sci. 2020;21(1):13-19.doi:10.23902/trkjnat.590839
  • Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999;86(6):985-990. doi:10.1046/j.1365-2672.1999.00780.x
  • Ebel R. Terpenes from marine-derived fungi. Mar Drugs. 2010;8(8):2340-2368. doi:10.3390/md8082340
  • Wojtunik-Kulesza, KA, Targowska-Duda K, Klimek K, et al. (2017). Volatile terpenoids as potential drug leads in Alzheimer’s disease. Open Chem. 2017;15(1):332-343.doi:10.1515/chem-2017-0040
  • Hanif M, Mehmood MH, Ishrat G, et al. Pharmacological basis for the medicinal use of Alcea rosea in airways disorders and chemical characterization of its fixed oils through GC-MS. Pak J Pharm Sci. 2019;32(5):2347-2355.
  • Keser S, Keser F, Tekin S, et al. In vitro antiradical, antimicrobial and antiproliferative activities and phytochemical compositions of endemic Alcea calvertii (Boiss) Boiss. flowers. Duzce University Journal of Science and Technology. 2020;8(1):693-701. doi:10.29130/dubited.595147.
  • Khidyrova NK, Rakhmatova MZ, Kukina TP, Shakhidoyatov RK, Shakhidoyatov KM. Polyprenols and triterpenoids from leaves of Alcea nudiflora. Chem Nat Compd. 2012;48(2):180-184.
  • Lee KG, Shibamoto T. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices. J Agric Food Chem. 2002;50(17):4947-4952. doi:10.1021/jf025568
  • Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites. 2019;9(11):258-271. doi:10.3390/metabo9110258
  • Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. Medicinal Plants, 2019;2019:333-359.doi:10.1007/978-3-030-31269-5_15
  • Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Arch. Oral Biol. 2018;88:42-46doi:10.1016/j.archoralbio.2018.01.009
  • Martins CDM, Nascimento EAD, de Morais SA, et al. Chemical constituents and evaluation of antimicrobial and cytotoxic activities of Kielmeyera coriacea Mart. & Zucc. essential oils. Evid Based Complement Alternat Med. 2015;2015:1-9.doi:10.1155/2015/842047
  • Baurin N, Arnoult E, Scior T, Do QT,Bernard P. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharmacol. 2002;82:155-158. doi:10.1016/S0378-8741(02)00174-5
  • Tengamnuay P, Pengrungruangwong K, Pheansri I, Likhitwitayawuid K. Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities. Int J Cosmet Sci. 2006; 28: 269-276.doi:10.1111/j.1467-2494.2006.00339.x
  • Murray A, Faraoni M, Castro M, Alza N, Cavallaro V. Natural AChE Inhibitors from plants and their contribution to Alzheimer’s Disease therapy. Curr Neuropharmacol. 2013;11(4):388-143.doi:10.2174/1570159X11311040004
  • Namjoyan F, Jahangiri A, Azemi ME, Arkian E, Mousavi H. Inhibitory Effects of Physalis alkekengi L., Alcea rosea L., Bunium persicum B. Fedtsch. and Marrubium vulgare L. on mushroom tyrosinase. Jundishapur J Nat Pharm Prod. 2015;10(1):1-6.doi:10.17795/jjnpp-23356
  • Yang, CH, Huang YC, Tsai ML, et al. Inhibition of melanogenesis by β‐caryophyllene from lime mint essential oil in mouse B16 melanoma cells. Int J Cosmet Sci. 2015;37(5):550-554.doi:10.1111/ics.12224
  • Maghsoudi S, Adibi H, Hamzeh M, et al. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivatives. J. Rep. in Pharm. Sci. 2013;2(2):156-164.
  • Samai Z, Toudert N, Djilani SE, et al.Chemical Composition and in vitro Antioxidant, Anti‐Alzheimer, Anti‐Diabetic, Anti‐Tyrosinase, and Antimicrobial Properties of Essential Oils and Extracts Derived from Various Parts of the Algerian Calendula suffruticosa Vahl subsp. boissieri Lanza. Chem. Biodiversity. 2023;20(1):1-10.doi:10.1002/cbdv.202200620
  • Pintatum A, Laphookhieo S. Volatile constituents of Amomum argyrophyllum Ridl. and Amomum dealbatum Roxb. and their antioxidant, tyrosinase inhibitory and cytotoxic activities. Arab. J. Chem. 2022;15(10):1-12.doi:10.1016/j.arabjc.2022.104148
  • José-Rita BJ, Bertin GK, Ibrahime SK, et al. Study of the chemical and in vitro cytotoxic activities of essential oils (EOs) of two plants from the Ivorian flora (Lippia multiflora and Zingiber officinale) and their antiviral activities against non-enveloped viruses. S Afr J Bot. 2022:151;387-393.doi:10.1016/j.sajb.2022.03.053
  • Adewinogo SO, Sharma R, Africa CW, et al. Chemical Study and Comparison of the Biological Activities of the Essential Oils of Helichrysum petiolare, H. cymosum, and H. odoratissimum. Plants. 2022;11(19):1-16.doi:10.3390/plants11192606.
There are 42 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry, Pharmacognosy
Journal Section Research Article
Authors

Sıla Özlem Sener 0000-0001-7679-7165

Şeyda Kanbolat 0000-0001-7261-7067

Nevin Ulaş Çolak 0000-0003-3200-6688

Merve Badem 0000-0002-1265-5616

Rezzan Aliyazıcıoğlu 0000-0003-0143-8795

Ufuk Özgen 0000-0001-9839-6717

Şengül Alpay Karaoğlu 0000-0003-1047-8350

Ali Kandemir 0000-0003-1902-9631

Early Pub Date July 22, 2024
Publication Date July 25, 2024
Submission Date November 1, 2023
Acceptance Date May 21, 2024
Published in Issue Year 2024 Volume: 33 Issue: 2

Cite

APA Sener, S. Ö., Kanbolat, Ş., Ulaş Çolak, N., Badem, M., et al. (2024). ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY. Sağlık Bilimleri Dergisi, 33(2), 190-198. https://doi.org/10.34108/eujhs.1384325
AMA Sener SÖ, Kanbolat Ş, Ulaş Çolak N, Badem M, Aliyazıcıoğlu R, Özgen U, Alpay Karaoğlu Ş, Kandemir A. ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY. JHS. July 2024;33(2):190-198. doi:10.34108/eujhs.1384325
Chicago Sener, Sıla Özlem, Şeyda Kanbolat, Nevin Ulaş Çolak, Merve Badem, Rezzan Aliyazıcıoğlu, Ufuk Özgen, Şengül Alpay Karaoğlu, and Ali Kandemir. “ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY”. Sağlık Bilimleri Dergisi 33, no. 2 (July 2024): 190-98. https://doi.org/10.34108/eujhs.1384325.
EndNote Sener SÖ, Kanbolat Ş, Ulaş Çolak N, Badem M, Aliyazıcıoğlu R, Özgen U, Alpay Karaoğlu Ş, Kandemir A (July 1, 2024) ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY. Sağlık Bilimleri Dergisi 33 2 190–198.
IEEE S. Ö. Sener, Ş. Kanbolat, N. Ulaş Çolak, M. Badem, R. Aliyazıcıoğlu, U. Özgen, Ş. Alpay Karaoğlu, and A. Kandemir, “ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY”, JHS, vol. 33, no. 2, pp. 190–198, 2024, doi: 10.34108/eujhs.1384325.
ISNAD Sener, Sıla Özlem et al. “ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY”. Sağlık Bilimleri Dergisi 33/2 (July 2024), 190-198. https://doi.org/10.34108/eujhs.1384325.
JAMA Sener SÖ, Kanbolat Ş, Ulaş Çolak N, Badem M, Aliyazıcıoğlu R, Özgen U, Alpay Karaoğlu Ş, Kandemir A. ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY. JHS. 2024;33:190–198.
MLA Sener, Sıla Özlem et al. “ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY”. Sağlık Bilimleri Dergisi, vol. 33, no. 2, 2024, pp. 190-8, doi:10.34108/eujhs.1384325.
Vancouver Sener SÖ, Kanbolat Ş, Ulaş Çolak N, Badem M, Aliyazıcıoğlu R, Özgen U, Alpay Karaoğlu Ş, Kandemir A. ANALYSIS OF VOLATILE COMPOUNDS OF ALCEA CALVERTII BOISS. AND ITS ANTIMICROBIAL, ANTICHOLINESTERASE, AND ANTITYROSINASE POTENCY. JHS. 2024;33(2):190-8.