Research Article
BibTex RIS Cite

CAPSAICIN SUPPRESSES CELL VIABILITY BY REGULATING EPITHELIAL-MESENCHYMAL TRANSITION IN U87 HUMAN GLIOBLASTOMA CELLS

Year 2024, Volume: 33 Issue: 2, 271 - 278, 25.07.2024
https://doi.org/10.34108/eujhs.1405234

Abstract

Glioblastomastands out as one of the most prevalent malignant tumors affecting the central nervous system, and its current prognosis is unfavorable due to the lack of effective treatment options. Capsaicin, a derivative of homovanillic acid, has been documented for its anti-tumor effects across various cancer cell lines. Epithelial-to-mesenchymal transition is a pivotal molecular and cellular process inherent to normal embryogenesis and wound healing. Moreover, it plays a widespread role in diverse carcinoma and glioblastoma types. This study sought to explore the potential involvement of epithelial-to-mesenchymal transition in the anti-tumor effects induced by capsaicin in U87 glioblastoma cell lines. Initially, the impact of capsaicin treatment on cell viability was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide analysis. Subsequently, cellular proliferation and cytotoxicity were evaluated using bromodeoxyuridine analysis. Further examinations involved determining the levels of N-cadherin, matrix metalloproteinase-9, vimentin, transforming growth factor β, caspase 3, cytochrome c, glutathione reductase, malondialdehyde and catalase through enzyme-linked immunosorbent assay. Capsaicin exhibited anti-proliferative effects in U87 cells, displaying a concentration-dependent reduction in cell viability, particularly with concentrations exceeding 50 μM. Additionally, capsaicin administration led to decreased of N-cadherin, matrix metalloproteinase-9, vimentin, transforming growth factor β, glutathione reductase and catalaselevels in U87 cells, while increasing caspase 3, cytochrome c and malondialdehyde levels.Our results showed that capsaicin treatment not only regulates epithelial-to-mesenchymal transition in U87 cells, but also suppresses cell viability by triggering apoptotic and oxidative processes. This observation suggests that epithelial-to-mesenchymal transition plays a pivotal role in the proliferation and migration of glioblastoma. Consequently, targeting this capsaicin-mediated signaling pathway could be considered a promising therapeutic approach in the treatment of glioblastoma.

References

  • Dongre A, Weinberg RA. New insightsin to the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. doi: 10.1038/s41580-018-0080-4
  • Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429-37. doi: 10.1172/JCI36183
  • Kahlert UD, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignantgliomas. Cancer Lett. 2013;331(2):131-8. doi: 10.1016/j.canlet.2012.12.010
  • Wang LM, Englander ZK, Miller ML, Bruce JN. Malignant Glioma. Adv Exp Med Biol. 2023;1405:1-30. doi: 10.1007/978-3-031-23705-8_1
  • Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics. 2017;14(2):284-297. doi: 10.1007/s13311-017-0519-x
  • Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers. 2015;1:15017. doi: 10.1038/nrdp.2015
  • Gusyatiner O, Hegi ME. Glioma epigenetics: From subclassification to novel treatment options. Semin Cancer Biol. 2018;51:50-58. doi: 10.1016/j.semcancer.2017.11.010
  • Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol. 2020;60:262-273. doi: 10.1016/j.semcancer.2019.10.010
  • Iwadate Y. Plasticity in Glioma Stem Cell Phenotype and Its Therapeutic Implication. Neurol Med Chir (Tokyo). 2018;58(2):61-70.doi: 10.2176/nmc.ra.2017-0089
  • Reilly CA, Taylor JL, Lanza DL, Carr BA, Crouch DJ, Yost GS. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors. Toxicol Sci. 2003;73(1):170-81. doi:10.1093/toxsci/kfg044
  • Grüter T, Blusch A, Motte J, et al. Immunomodulatory and anti-oxidative effect of the direct TRPV1 receptor agonist capsaicin on Schwanncells. J Neuroinflammation. 2020;17(1):145. doi:10.1186/s12974-020-01821-5
  • Geng S, Zheng Y, Meng M, et al. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model. J Agric Food Chem. 2016;64(31):6203-11. doi: 10.1021/acs.jafc.6b02480
  • Wutka A, Palagani V, Barat S, et al. Capsaicin treatment attenuate scholangio carcino macarcino genesis. PLo S One. 2014;9(4):e95605. doi: 10.1371/journal.pone.0095605
  • Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol. 2020;13(3):265-285. doi: 10.1080/1751 2433.2020.1738218
  • Liu T, Wang G, Tao H, et al. Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK path ways in human renal carcinoma. BMC Cancer. 2016;16(1):790. doi:10.1186/s12885-016-2831-y
  • Hacioglu C. Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling path ways in HepG2 and HL-7702 cells. J Biochem Mol Toxicol. 2022;36(3):e22974. doi: 10.1002/jbt.22974
  • Nam EH, Lee Y, Moon B, Lee JW, Kim S. Twist1 and AP-1 cooperatively upregulate integrin α5 expression to induce invasion and the epithelial-mesenchy maltransition. Carcinogenesis. 2015;36(3):327-37. doi:10.1093/carcin/bgv005
  • Yang J, Li TZ, Xu GH, Luo BB, Chen YX, Zhang T. Low-concentration capsaicin promotes colorectal cancer metastasis by triggering ROS production and modulating Akt/m TO Rand STAT-3 path ways. Neoplasma. 2013;60(4):364-72. doi: 10.4149/neo_2013_048
  • Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, Gismondi A, Santoni G. Capsaicin trigger sauto phagic cell survival which drives epithelial mesenchy maltransition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget. 2016;7(31):50180-50194. doi: 10.18632/oncotarget.10326
  • Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21-45. doi: 10.1016/j.cell.2016.06.028
  • Que T, Ren B, Fan Y, et al. Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated auto phagy. Chem Biol Interact. 2022;366:110043. doi: 10.1016/j.cbi.2022.110043
  • Li BH, Yuan L. Inhibitory effects of capsaicin on migration and invasion of breast cancer MDA-MB-231 cells and its mechanism. Sheng Li Xue Bao. 2017;69(2):183-188. doi:10.13294/j.aps.2017.0016
  • Venier NA, Yamamoto T, Sugar LM, Adomat H, Fleshner NE, Klotz LH, Venkateswaran V. Capsaicin reduces the metastatic burden in the trans genicadeno carcinoma of the Mouse prostate model. Prostate. 2015 Sep;75(12):1300-11. doi: 10.1002/pros.23013
  • Ling G, Ji Q, Ye W, Ma D, Wang Y. Epithelial-mesenchymal transition regulated by p38/MAPK signaling path ways participates in vasculogenicmimicry formation in SHG44 cells transfected with TGF-β cDNA loaded lentivirus in vitro and in vivo. Int J Oncol. 2016;49(6):2387-2398. doi:10.3892/ijo.2016.3724
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. doi:10.1016/j.cell.2011.02.013
  • Clark R, Lee SH. Anticancer properties of capsaicin against human cancer. Anticancer Res. 2016;36(3):837-43.
  • Chalah A, Khosravi-Far R. The mitochondrial death path way. Adv Exp Med Biol. 2008;615:25-45. doi:10.1007/978-1-4020-6554-5_3
  • Kim MY, Trudel LJ, Wogan GN. Apoptosis induced by capsaicin and resveratrol in coloncarcinoma cells requires nitric oxide production and caspase activation. Anticancer Res. 2009;29(10):3733-40.
  • Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi: 10.1016/j.redox.2018.101084
  • Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17(1):22-28. doi:10.4103/jcrt.JCRT_862_16
  • Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK. In vitro and in vivo induction of apoptosis bycapsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death path way. Apoptosis. 2008;13(12):1465-78. doi: 10.1007/s10495-008-0278-6
  • Xie L, Xiang GH, Tang T, et al. Capsaicin and dihydro capsaicin induce apoptosis in human glioma cellsvia ROS and Ca2+‑mediated mitochondrial path way. Mol Med Rep. 2016;14(5):4198-4208. doi:10.3892/mmr.2016.5784
  • O'Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH. Unravelling the my stery of capsaicin: a tool to understand and treatpain. Pharmacol Rev. 2012;64(4):939-971. doi:10.1124/pr.112.006163
  • Saria A, Skofitsch G, Lembeck F. Distribution of capsaicin in rat tissues after systemic administration. J Pharm Pharmacol. 1982;34(4):273-275. doi: 10.1111/j.2042-7158.1982.tb04245.x
  • Janssens PL, Hursel R, Westerterp-Plantenga MS. Capsaicinin creases sensation of full ness in energy balance, and decreases desire to eat after dinner in negative energy balance. Appetite. 2014;77:44-49. doi: 10.1016/j.appet.2014.02.018
  • Ludy MJ, Moore GE, Mattes RD. The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chem Senses. 2012;37(2):103-121. doi: 10.1093/chemse/bjr100
  • Fattori V, Hohmann MS, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules. 2016;21(7):844. doi: 10.3390/molecules21070844
  • Fusco BM, Fiore G, Gallo F, Martelletti P, Giacovazzo M. "Capsaicin-sensitive" sensory neurons in cluster headache: pathophysiological aspects and therapeutic indication. Headache. 1994;34(3):132-137. doi:10.1111/j.1526-4610.1994.hed 3403132.x
  • Clark R, Lee SH. Anti cancer properties of capsaicin against human cancer. Anticancer Res. 2016;36(3):837-843.
  • Hacioglu C. Capsaicin enhanceste mozolomide-resistant glioblastoma cells’ chemo sensitivity and ferroptosis through FHOD1/IRF2 down regulation. J Food Biochem. 2024;8464817:1-11. doi:10.1155/2024/8464817

KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR

Year 2024, Volume: 33 Issue: 2, 271 - 278, 25.07.2024
https://doi.org/10.34108/eujhs.1405234

Abstract

Glioblastoma, merkezi sinir sistemini etkileyen en yaygın malign tümörlerden biri olarak öne çıkmakta ve etkili tedavi seçeneklerinin bulunmaması nedeniyle mevcut prognozu kötüdür. Homovanilik asidin bir türevi olan kapsaisinin, çeşitli kanser hücre dizileri üzerindeki anti-tümör etkileri belgelenmiştir. Epitelyal-mezenkimal geçiş, normal embriyogenez ve yara iyileşmesinin doğasında bulunan önemli bir moleküler ve hücresel süreçtir. Ayrıca çeşitli karsinom ve glioblastoma tiplerinde yaygın bir rol oynar. Bu çalışma, U87 glioblastoma hücre hatlarında kapsaisin tarafından indüklenen anti-tümör etkilerine epitelyal-mezenkimal geçişin potansiyel katılımını araştırmayı amaçladı. Başlangıçta kapsaisin tedavisinin hücre canlılığı üzerindeki etkisi 3-(4,5-dimetiltiyazol-2-il)-2,5-difenil tetrazolyum bromür analizi yoluyla değerlendirildi. Daha sonra hücresel proliferasyon ve sitotoksisite, bromodeoksiüridin analizi kullanılarak değerlendirildi. Daha ileri incelemeler, enzim-bağlı immünosorbent deneyi yoluyla N-kaderin, matriks metalloproteinaz-9, vimentin, transforme edici büyüme faktörü β, kaspaz 3, sitokrom c, glutatyon redüktaz, malondialdehit ve katalaz seviyelerinin belirlenmesini içeriyordu. Kapsaisin, U87 hücrelerinde anti-proliferatif etkiler sergileyerek, özellikle 50 μM'yi aşan konsantrasyonlarda hücre canlılığında konsantrasyona bağlı bir azalma sergiledi. Ek olarak kapsaisin uygulaması, U87 hücrelerinde N-kaderin, matriks metalloproteinaz-9, vimentin, transforme edici büyüme faktörü β, glutatyon redüktaz ve malondialdehit seviyelerinin azalmasına yol açarken, kaspaz 3, sitokrom c ve malondialdehit seviyelerinin artışına neden olmuştur.Sonuçlarımız kapsaisin uygulamasının U87 hücrelerinde epitelyal-mezenkimal geçişi düzenlemesinin yanı sıra apoptotik ve oksidatif süreçleri de tetikleyerek hücre canlılığını baskıladığını göstermiştir. Bu gözlem, epitelyal-mezenkimal geçişinglioblastoma çoğalmasında ve migrasyonunda önemli bir rol oynadığını göstermektedir. Sonuç olarak, kapsaisin aracılı bu sinyal yolunun hedeflenmesi, glioblastoma tedavisinde umut verici bir terapötik yaklaşım olarak düşünülebilir.

Ethical Statement

Ticari olarak temin edilen hücre hatları in vitro çalışma olarak kullanıldığı için etik onay gerekmemektedir.

Supporting Institution

Bu çalışma herhangi bir fon tarafından desteklenmemiştir.

References

  • Dongre A, Weinberg RA. New insightsin to the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. doi: 10.1038/s41580-018-0080-4
  • Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429-37. doi: 10.1172/JCI36183
  • Kahlert UD, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignantgliomas. Cancer Lett. 2013;331(2):131-8. doi: 10.1016/j.canlet.2012.12.010
  • Wang LM, Englander ZK, Miller ML, Bruce JN. Malignant Glioma. Adv Exp Med Biol. 2023;1405:1-30. doi: 10.1007/978-3-031-23705-8_1
  • Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics. 2017;14(2):284-297. doi: 10.1007/s13311-017-0519-x
  • Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers. 2015;1:15017. doi: 10.1038/nrdp.2015
  • Gusyatiner O, Hegi ME. Glioma epigenetics: From subclassification to novel treatment options. Semin Cancer Biol. 2018;51:50-58. doi: 10.1016/j.semcancer.2017.11.010
  • Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol. 2020;60:262-273. doi: 10.1016/j.semcancer.2019.10.010
  • Iwadate Y. Plasticity in Glioma Stem Cell Phenotype and Its Therapeutic Implication. Neurol Med Chir (Tokyo). 2018;58(2):61-70.doi: 10.2176/nmc.ra.2017-0089
  • Reilly CA, Taylor JL, Lanza DL, Carr BA, Crouch DJ, Yost GS. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors. Toxicol Sci. 2003;73(1):170-81. doi:10.1093/toxsci/kfg044
  • Grüter T, Blusch A, Motte J, et al. Immunomodulatory and anti-oxidative effect of the direct TRPV1 receptor agonist capsaicin on Schwanncells. J Neuroinflammation. 2020;17(1):145. doi:10.1186/s12974-020-01821-5
  • Geng S, Zheng Y, Meng M, et al. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model. J Agric Food Chem. 2016;64(31):6203-11. doi: 10.1021/acs.jafc.6b02480
  • Wutka A, Palagani V, Barat S, et al. Capsaicin treatment attenuate scholangio carcino macarcino genesis. PLo S One. 2014;9(4):e95605. doi: 10.1371/journal.pone.0095605
  • Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol. 2020;13(3):265-285. doi: 10.1080/1751 2433.2020.1738218
  • Liu T, Wang G, Tao H, et al. Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK path ways in human renal carcinoma. BMC Cancer. 2016;16(1):790. doi:10.1186/s12885-016-2831-y
  • Hacioglu C. Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling path ways in HepG2 and HL-7702 cells. J Biochem Mol Toxicol. 2022;36(3):e22974. doi: 10.1002/jbt.22974
  • Nam EH, Lee Y, Moon B, Lee JW, Kim S. Twist1 and AP-1 cooperatively upregulate integrin α5 expression to induce invasion and the epithelial-mesenchy maltransition. Carcinogenesis. 2015;36(3):327-37. doi:10.1093/carcin/bgv005
  • Yang J, Li TZ, Xu GH, Luo BB, Chen YX, Zhang T. Low-concentration capsaicin promotes colorectal cancer metastasis by triggering ROS production and modulating Akt/m TO Rand STAT-3 path ways. Neoplasma. 2013;60(4):364-72. doi: 10.4149/neo_2013_048
  • Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, Gismondi A, Santoni G. Capsaicin trigger sauto phagic cell survival which drives epithelial mesenchy maltransition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget. 2016;7(31):50180-50194. doi: 10.18632/oncotarget.10326
  • Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21-45. doi: 10.1016/j.cell.2016.06.028
  • Que T, Ren B, Fan Y, et al. Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated auto phagy. Chem Biol Interact. 2022;366:110043. doi: 10.1016/j.cbi.2022.110043
  • Li BH, Yuan L. Inhibitory effects of capsaicin on migration and invasion of breast cancer MDA-MB-231 cells and its mechanism. Sheng Li Xue Bao. 2017;69(2):183-188. doi:10.13294/j.aps.2017.0016
  • Venier NA, Yamamoto T, Sugar LM, Adomat H, Fleshner NE, Klotz LH, Venkateswaran V. Capsaicin reduces the metastatic burden in the trans genicadeno carcinoma of the Mouse prostate model. Prostate. 2015 Sep;75(12):1300-11. doi: 10.1002/pros.23013
  • Ling G, Ji Q, Ye W, Ma D, Wang Y. Epithelial-mesenchymal transition regulated by p38/MAPK signaling path ways participates in vasculogenicmimicry formation in SHG44 cells transfected with TGF-β cDNA loaded lentivirus in vitro and in vivo. Int J Oncol. 2016;49(6):2387-2398. doi:10.3892/ijo.2016.3724
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. doi:10.1016/j.cell.2011.02.013
  • Clark R, Lee SH. Anticancer properties of capsaicin against human cancer. Anticancer Res. 2016;36(3):837-43.
  • Chalah A, Khosravi-Far R. The mitochondrial death path way. Adv Exp Med Biol. 2008;615:25-45. doi:10.1007/978-1-4020-6554-5_3
  • Kim MY, Trudel LJ, Wogan GN. Apoptosis induced by capsaicin and resveratrol in coloncarcinoma cells requires nitric oxide production and caspase activation. Anticancer Res. 2009;29(10):3733-40.
  • Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi: 10.1016/j.redox.2018.101084
  • Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17(1):22-28. doi:10.4103/jcrt.JCRT_862_16
  • Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK. In vitro and in vivo induction of apoptosis bycapsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death path way. Apoptosis. 2008;13(12):1465-78. doi: 10.1007/s10495-008-0278-6
  • Xie L, Xiang GH, Tang T, et al. Capsaicin and dihydro capsaicin induce apoptosis in human glioma cellsvia ROS and Ca2+‑mediated mitochondrial path way. Mol Med Rep. 2016;14(5):4198-4208. doi:10.3892/mmr.2016.5784
  • O'Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH. Unravelling the my stery of capsaicin: a tool to understand and treatpain. Pharmacol Rev. 2012;64(4):939-971. doi:10.1124/pr.112.006163
  • Saria A, Skofitsch G, Lembeck F. Distribution of capsaicin in rat tissues after systemic administration. J Pharm Pharmacol. 1982;34(4):273-275. doi: 10.1111/j.2042-7158.1982.tb04245.x
  • Janssens PL, Hursel R, Westerterp-Plantenga MS. Capsaicinin creases sensation of full ness in energy balance, and decreases desire to eat after dinner in negative energy balance. Appetite. 2014;77:44-49. doi: 10.1016/j.appet.2014.02.018
  • Ludy MJ, Moore GE, Mattes RD. The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chem Senses. 2012;37(2):103-121. doi: 10.1093/chemse/bjr100
  • Fattori V, Hohmann MS, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules. 2016;21(7):844. doi: 10.3390/molecules21070844
  • Fusco BM, Fiore G, Gallo F, Martelletti P, Giacovazzo M. "Capsaicin-sensitive" sensory neurons in cluster headache: pathophysiological aspects and therapeutic indication. Headache. 1994;34(3):132-137. doi:10.1111/j.1526-4610.1994.hed 3403132.x
  • Clark R, Lee SH. Anti cancer properties of capsaicin against human cancer. Anticancer Res. 2016;36(3):837-843.
  • Hacioglu C. Capsaicin enhanceste mozolomide-resistant glioblastoma cells’ chemo sensitivity and ferroptosis through FHOD1/IRF2 down regulation. J Food Biochem. 2024;8464817:1-11. doi:10.1155/2024/8464817
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Metabolic Medicine
Journal Section Research Article
Authors

Ceyhan Hacıoğlu 0000-0002-0993-6118

Early Pub Date July 22, 2024
Publication Date July 25, 2024
Submission Date December 15, 2023
Acceptance Date May 15, 2024
Published in Issue Year 2024 Volume: 33 Issue: 2

Cite

APA Hacıoğlu, C. (2024). KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR. Sağlık Bilimleri Dergisi, 33(2), 271-278. https://doi.org/10.34108/eujhs.1405234
AMA Hacıoğlu C. KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR. JHS. July 2024;33(2):271-278. doi:10.34108/eujhs.1405234
Chicago Hacıoğlu, Ceyhan. “KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR”. Sağlık Bilimleri Dergisi 33, no. 2 (July 2024): 271-78. https://doi.org/10.34108/eujhs.1405234.
EndNote Hacıoğlu C (July 1, 2024) KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR. Sağlık Bilimleri Dergisi 33 2 271–278.
IEEE C. Hacıoğlu, “KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR”, JHS, vol. 33, no. 2, pp. 271–278, 2024, doi: 10.34108/eujhs.1405234.
ISNAD Hacıoğlu, Ceyhan. “KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR”. Sağlık Bilimleri Dergisi 33/2 (July 2024), 271-278. https://doi.org/10.34108/eujhs.1405234.
JAMA Hacıoğlu C. KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR. JHS. 2024;33:271–278.
MLA Hacıoğlu, Ceyhan. “KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR”. Sağlık Bilimleri Dergisi, vol. 33, no. 2, 2024, pp. 271-8, doi:10.34108/eujhs.1405234.
Vancouver Hacıoğlu C. KAPSAİSİN U87 İNSAN GLİOBLASTOMA HÜCRELERİNDE EPİTELYAL-MEZENKİMAL GEÇİŞİ REGÜLE EDEREK HÜCRE CANLILIĞINI BASKILAR. JHS. 2024;33(2):271-8.