Research Article
BibTex RIS Cite
Year 2021, , 152 - 158, 04.03.2021
https://doi.org/10.18621/eurj.603491

Abstract

References

  • 1. Dancer SJ. How antibiotics can make us sick: The less obvious adverse effects of antimicrobial chemotherapy. Lancet Infect Dis 2004;4:611-9.
  • 2. Courtis S, Cappellano C, Ball M, Francois F, Helynck F, Martizez A, et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 2003;69:49-55.
  • 3. Viscardi M, Perugini AG, Auriemma C, Capuano F, Morabito S, Kim KP, et al. Isolation and characterisation of two novel coliphages with high potential to control antibiotic-resistant pathogenic Escherichia coli (EHEC and EPEC). Int JAntimicrob Agents 2008;31:152-7.
  • 4. Wang J, Haddad NI, Yang SZ, Mu BZ. Structural characterization of lipopeptides from Brevibacillus brevis HOB1. Appl Biochem Biotechnol 2010;160:812-21.
  • 5. Mogi T, Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 2009;66:3821-6.
  • 6. Smirnova TA, Minenkova IB, Orlova MV, Lecadet MM, Azizbekyan RR. The crystal-forming strains of Bacillus laterosporus. Res Microbiol 1996;147:343-50.
  • 7. Huang X, Tian B, Niu Q, Yang J, Zhang L, Zhang K. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 2005;156:719-27.
  • 8. Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 2007;70:1850-3.
  • 9. Krachkovskii SA, Sobol AG, Ovchinnikova TV, Tagaev AA, Yakimenko ZA, et al. Isolation, biological properties, and spatial structure of antibiotic loloatin A. Russ J Bioorg Chem 2002;28:269-73.
  • 10. Usta Ak A, Demirkan E. The effect of growth parameters on the antibiotic activity and sporulation in Bacillus spp. isolated from soil. J Microbiol Biotech Food Sci 2013;2:2310-3.
  • 11. Parente E, Ricciardi A, Addario G. Influence of pH on growth and bacteriocin production by Lactococcuslactis subsp. lactis 140NWC during batch fermentation. Appl Microbiol Biotechnol 1994;41:388-94.
  • [12] Moortvedt-Abildgaard CI, Nissen-Meyer J, Jelle B, Grenov B, Skaugen M, Nes IF. Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake L45. Appl Environ Microbiol 1995;61:175-9.
  • 13. Jose PA, Sivakala KK, Jebakumar SRD. Formulation and statistical optimization of culture medium for improved activity of antimicrobial compound by Streptomyces sp. JAJ06. Int J Microb 2013;1-9.
  • 14. Usta Ak A, Demirkan E, Cengiz M, Sevgi T, Zeren B, Abdou M. Optimization of culture medium for the production and partial purification and characterization of an antibacterial activity from Brevibacillus laterosporus Strain EA62. Rom Biotechnol Lett 2019;24:705-13.
  • 15. Wang H, Lu Y, Zhang X, Hu Y, Yu H, Liu J, et al. The novel antimicrobial peptides from skin of Chinese broad-folded frog, Hylaranalatouchii (Anura:Ranidae). Peptides 2009;30:273-82.
  • 16. Kavanagh F. Analytical Microbiology. Vol. 2. New York: Ahead Press, 1972.
  • 17. Jia B, Jin ZH, Mei LH. Medium optimization based on statistical methodologies for pristinamycins production by Streptomyces pristinaespiralis. Appl Biochem Biotechnol 2008;144:133-43.
  • 18. Ashokkumar B, Kayalvizhi N, Gunasekaran P. Optimization of media for β fructofuranosidase production by Aspergillus nigerin submerged and solid state fermentation. Process Biochem 2001;37:331-8.
  • 19. Singha P,Roymon MG. Antibiotic potential of soil actinomycetes under influence of physical and nutritioial parameters. Indian J Sci Res 2017;13:203-7.
  • 20. Linda H, Al-Ghazali R. Omran. Optimızation of medium composition for antibacterial metabolite activity from Streptomyces sp.Asian J Pharm Clin Res 2017;10:381-5.
  • 21. Kadiri SK,Yarla NS. Optimization of antimicrobial metabolites activity by Streptomyces fradiae. Int J Pharm Sci 2016;7:223-5.
  • 22. Kumar SN, Siji JV, Ramya R, Nambisan B, Mohandas C. Improvement of antimicrobial activity of compounds produced by Bacillus sp. associated with a Rhabditid sp. (entomopathogenıc nematode) by changing carbon and nitrogen sources in fermentation media. J Microbiol Biotech Food Sci 2012;1:1424-38.
  • 23. Abdelghani T. Activity of antibacterial and antifungal metabolites by (S.albovinaceus) strain no.10/2 and media optimization.AmInt J Bio 2017;5:1-24.
  • 24. Ekhay O, Ouhsassi M, Abdeltif EH, Idaomar M, Abrini J. Optimization of bacteriocin-like production by Enterococcus durans E204 isolated from camel milk of Morocco. Curr Res Microbiol Biotechnol 2013;1:155-9.
  • 25. Todorov SD. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 2008;39:178-87.
  • 26. Kalpana S, Bagudo AI, Aliero AA. Effect of inhibitory spectrum and physical conditions on the activity of antibiotic substance from B. laterosporus ST-1. Niger J Microbiol 2010;24:2134-9.
  • 27. Lin HY, Rao YK, Wu WS, Tzeng YM. Ferrous ion enhanced lipopeptide antibiotic iturin A activity from Bacillus amyloliquefaciens B128. Int J Appl Sci Eng 2007;5:123-32.
  • 28. Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 2013;97:87-98.
  • 29. Martin JF, Demain AL. Fungal development and metabolite formation. In: The Filamentous Fungi. Eds. Smith JE, Berry DR, Arnold, London. 1978;3:426-50.
  • 30. Bisht SS, Praveen B, Panda A, Rajakumar V. Isolation, purification and characterization of bacitracin from Bacillus sp. Int J Pharm Sci 2011;3:136-8.
  • 31. Joshi RD, Hamde VS, Umrikar AM, Kulkarni SS, Bhate MA. Studies on activity of peptide antibiotic by thermotolerant Bacillus sp. Int Multidis Res J 2012;2:30-3.

Optimization of culture conditions for antibacterial substance production from newly isolated Brevibacillus laterosporus EA62

Year 2021, , 152 - 158, 04.03.2021
https://doi.org/10.18621/eurj.603491

Abstract

Objectives: In the present study, it was reported the effects of some nutritional (amino acid, carbon, nitrogen and metal sources) and physical factors (pH and temperature) on antibacterial substance activity of Brevibacillus laterosporus EA62.


Methods:
The agar well diffusion assay was performed to evaluate the antibacterial activity of the substance. The antibacterial activity of the new substance was examined against four pathogenic bacteria under different nutritional and physical conditions.


Results:
The best antibacterial activity was obtained in modified medium consists of the 5% glucose, 0.1% tryptone, 0.05% MgSO4+CaCO3 and 0.5% glutamic acid. For physical parameters, maximal activity was observed after 72 h when incubated at 37°C, pH 7.0.


Conclusions:
This study indicates that Brevibacillus laterosporus EA62 could be an important source of antibacterial substances under this medium optimization.

References

  • 1. Dancer SJ. How antibiotics can make us sick: The less obvious adverse effects of antimicrobial chemotherapy. Lancet Infect Dis 2004;4:611-9.
  • 2. Courtis S, Cappellano C, Ball M, Francois F, Helynck F, Martizez A, et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 2003;69:49-55.
  • 3. Viscardi M, Perugini AG, Auriemma C, Capuano F, Morabito S, Kim KP, et al. Isolation and characterisation of two novel coliphages with high potential to control antibiotic-resistant pathogenic Escherichia coli (EHEC and EPEC). Int JAntimicrob Agents 2008;31:152-7.
  • 4. Wang J, Haddad NI, Yang SZ, Mu BZ. Structural characterization of lipopeptides from Brevibacillus brevis HOB1. Appl Biochem Biotechnol 2010;160:812-21.
  • 5. Mogi T, Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 2009;66:3821-6.
  • 6. Smirnova TA, Minenkova IB, Orlova MV, Lecadet MM, Azizbekyan RR. The crystal-forming strains of Bacillus laterosporus. Res Microbiol 1996;147:343-50.
  • 7. Huang X, Tian B, Niu Q, Yang J, Zhang L, Zhang K. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 2005;156:719-27.
  • 8. Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 2007;70:1850-3.
  • 9. Krachkovskii SA, Sobol AG, Ovchinnikova TV, Tagaev AA, Yakimenko ZA, et al. Isolation, biological properties, and spatial structure of antibiotic loloatin A. Russ J Bioorg Chem 2002;28:269-73.
  • 10. Usta Ak A, Demirkan E. The effect of growth parameters on the antibiotic activity and sporulation in Bacillus spp. isolated from soil. J Microbiol Biotech Food Sci 2013;2:2310-3.
  • 11. Parente E, Ricciardi A, Addario G. Influence of pH on growth and bacteriocin production by Lactococcuslactis subsp. lactis 140NWC during batch fermentation. Appl Microbiol Biotechnol 1994;41:388-94.
  • [12] Moortvedt-Abildgaard CI, Nissen-Meyer J, Jelle B, Grenov B, Skaugen M, Nes IF. Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake L45. Appl Environ Microbiol 1995;61:175-9.
  • 13. Jose PA, Sivakala KK, Jebakumar SRD. Formulation and statistical optimization of culture medium for improved activity of antimicrobial compound by Streptomyces sp. JAJ06. Int J Microb 2013;1-9.
  • 14. Usta Ak A, Demirkan E, Cengiz M, Sevgi T, Zeren B, Abdou M. Optimization of culture medium for the production and partial purification and characterization of an antibacterial activity from Brevibacillus laterosporus Strain EA62. Rom Biotechnol Lett 2019;24:705-13.
  • 15. Wang H, Lu Y, Zhang X, Hu Y, Yu H, Liu J, et al. The novel antimicrobial peptides from skin of Chinese broad-folded frog, Hylaranalatouchii (Anura:Ranidae). Peptides 2009;30:273-82.
  • 16. Kavanagh F. Analytical Microbiology. Vol. 2. New York: Ahead Press, 1972.
  • 17. Jia B, Jin ZH, Mei LH. Medium optimization based on statistical methodologies for pristinamycins production by Streptomyces pristinaespiralis. Appl Biochem Biotechnol 2008;144:133-43.
  • 18. Ashokkumar B, Kayalvizhi N, Gunasekaran P. Optimization of media for β fructofuranosidase production by Aspergillus nigerin submerged and solid state fermentation. Process Biochem 2001;37:331-8.
  • 19. Singha P,Roymon MG. Antibiotic potential of soil actinomycetes under influence of physical and nutritioial parameters. Indian J Sci Res 2017;13:203-7.
  • 20. Linda H, Al-Ghazali R. Omran. Optimızation of medium composition for antibacterial metabolite activity from Streptomyces sp.Asian J Pharm Clin Res 2017;10:381-5.
  • 21. Kadiri SK,Yarla NS. Optimization of antimicrobial metabolites activity by Streptomyces fradiae. Int J Pharm Sci 2016;7:223-5.
  • 22. Kumar SN, Siji JV, Ramya R, Nambisan B, Mohandas C. Improvement of antimicrobial activity of compounds produced by Bacillus sp. associated with a Rhabditid sp. (entomopathogenıc nematode) by changing carbon and nitrogen sources in fermentation media. J Microbiol Biotech Food Sci 2012;1:1424-38.
  • 23. Abdelghani T. Activity of antibacterial and antifungal metabolites by (S.albovinaceus) strain no.10/2 and media optimization.AmInt J Bio 2017;5:1-24.
  • 24. Ekhay O, Ouhsassi M, Abdeltif EH, Idaomar M, Abrini J. Optimization of bacteriocin-like production by Enterococcus durans E204 isolated from camel milk of Morocco. Curr Res Microbiol Biotechnol 2013;1:155-9.
  • 25. Todorov SD. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 2008;39:178-87.
  • 26. Kalpana S, Bagudo AI, Aliero AA. Effect of inhibitory spectrum and physical conditions on the activity of antibiotic substance from B. laterosporus ST-1. Niger J Microbiol 2010;24:2134-9.
  • 27. Lin HY, Rao YK, Wu WS, Tzeng YM. Ferrous ion enhanced lipopeptide antibiotic iturin A activity from Bacillus amyloliquefaciens B128. Int J Appl Sci Eng 2007;5:123-32.
  • 28. Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 2013;97:87-98.
  • 29. Martin JF, Demain AL. Fungal development and metabolite formation. In: The Filamentous Fungi. Eds. Smith JE, Berry DR, Arnold, London. 1978;3:426-50.
  • 30. Bisht SS, Praveen B, Panda A, Rajakumar V. Isolation, purification and characterization of bacitracin from Bacillus sp. Int J Pharm Sci 2011;3:136-8.
  • 31. Joshi RD, Hamde VS, Umrikar AM, Kulkarni SS, Bhate MA. Studies on activity of peptide antibiotic by thermotolerant Bacillus sp. Int Multidis Res J 2012;2:30-3.
There are 31 citations in total.

Details

Primary Language English
Subjects Medical Microbiology
Journal Section Original Articles
Authors

Elif Demirkan 0000-0002-5292-9482

Aynur Aybey 0000-0003-2743-9745

Alev Usta This is me 0000-0002-9728-0066

Publication Date March 4, 2021
Submission Date August 7, 2019
Acceptance Date September 16, 2020
Published in Issue Year 2021

Cite

AMA Demirkan E, Aybey A, Usta A. Optimization of culture conditions for antibacterial substance production from newly isolated Brevibacillus laterosporus EA62. Eur Res J. March 2021;7(2):152-158. doi:10.18621/eurj.603491

e-ISSN: 2149-3189 


The European Research Journal, hosted by Turkish JournalPark ACADEMIC, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

by-nc-nd.png

2025