The Determination of Virulence Factors among Fish Originated Enterococci
Yıl 2016,
, 98 - 103, 15.12.2016
Serap Savaşan
Şükrü Kırkan
Göksel Erbaş
Uğur Parın
Alper Çiftci
Öz
Enterococci are commensal organisms of human and animals, and may cause diseases in particular conditions. Several virulence factors are responsible in the production of diseases. The aim of this study was to isolate enterococci from fish and to determine virulence factors of the isolates. A total of 26 (13%) Enterococcus faecalis strains were isolated from live, moribund and dead fish collected from fish farms in Aegian Region. Cytolysin and gelatinase activities and aggregation substance production of these strains were examined.Cytolysin production was not detected in any of E. faecalis strains. Of 26 strains tested, 27% was found to produce aggregation substance. Gelatinase activity was found in 11.5% of strains. The presence of strains with important virulence factors in enterococci from fish was established. It was suggested that these strains have the potential of producing disease in human and animals.
Kaynakça
- 1. Araujo C, Munoz-Atienza E, Hernandez PE, Herranz C,
Cintas LM, Igrejas G, Poeta P, (2015). Evaluation of
Enterococcus spp. from Rainbow Trout (Oncorhynchus
mykiss, Walbaum), Feed, and Rearing Environment Against
Fish Pathogens. Foodborne Pathog Dis. 12(4), 311-322.
- 2. Bensoussan R, Weiss R, Laverdiere M, (1998). Vancomycinresistant
enterococcus. Scand J Gastroenterol. 33, 1233-
1238.
- 3. Carneiro CS, Evangelista-Barreto NS, da Silveira-Oliveira
CS, Silva IP, de Oliveira TAS, Saraiva MAF, (2015).
Antagonistic Activity, Antimicrobial Susceptibility and
Potential Virulence Factors of Enterococcus faecalis. J Life
Sci. 9, 318-326.
- 4. Çetinkaya Y, Falk P, Mayhall CG, (2000). Vancomycinresistant
enterococci. Clin Microbiol Rev. 13, 686-707.
- 5. Cheng W, Chen JC, (1998). Isolation and characterization
of an Enterococcus-like bacterium causing muscle necrosis
and mortality in Makrobranchium rosenbergii in Taiwan.
Dis Aquat Organ. 34(2), 93-101.
- 6. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian
SM, Clewell, DB, Zervos MJ, (1993). Plasmid-associated
hemolysin and aggregation substance production contribute
to virulence in experimental enterococcal endocarditis.
Antimicrob Agent Chemother. 37, 2474-2477.
- 7. Clewell DB, (1993). Bacterial sex pheromone-induced plasmid
transfer. Cell 73, 9-12.
- 8. Depardieu F, Perichon B, Courvalin P, (2004). Detection
of the van alphabet and identification of enterococci and
staphylococci at the species level by multiplex PCR. J Clin
Microbiol. 42, 5857-5860.
- 9. Devriese LA, Hommez J, Leavens H, Pot B, Vandamme P,
Haesebrouck F, (1999). Identification of aesculin-hydrolyzing
streptococci, lactococci, aerococci and enterococci
from subclinical intramammary infections in dairy cows.
Vet Microbiol. 70, 87-94.
- 10. Eaton TJ, Gasson MJ, (2001). Molecular screening of
Enterococcus virulence determinants and potential for genetic
exchange between food and medical isolates. Appl
Environ Microbiol. 67, 1628-1635.
- 11. Eldar A, Goria M, Ghittino C, Zlotkin A, Bercovier H,
(1999). Biodiversity of Lactococcus garviae strains isolated
from fish in Europe, Asia, and Australia. Appl Environ
Microbiol. 65(3), 1005-1008.
- 12. Elsner HA, Soottka I, Mack D, Claussen M, Laufs R, Wirth
R, (2000). Virulence factors of Enterococcus faecalis and
Enterococcus faecium blood culture isolates. Eur J Clin
Microbiol Infect Dis. 19, 39-42.
- 13. Frick IM, Morgelin M, Bjorck L, (2000). Virulent aggregates
of Streptococcus pyogenes are generated by homophilic
protein-protein interactions. Mol Microbiol. 37,1232-1247.
- 14. Gentry-Weeks CR, Karkhoff-Schweizer R, Pikis A, Estay
M, Keith JM, (1999). Survival of Enterococcus faecalis in
mouse peritoneal macrophages. Infect Immun. 57, 2160-
2165.
- 15. Gülhan T, Aksakal A, Ekin İH, Savaşan S, Boynukara B,
(2006). Virulence Factors of Enterococcus faecium and
Enterococcus faecalis strains isolated from humans and
pets. Turk J Vet Anim Sci. 30, 477-482.
- 16. Harwood VJ, Brownell M, Perusek W, Whitlock JE, (2001).
Vancomycin-resistant Enterococcus spp. isolated from
wastewater and chicken feces in the United States. Appl
Environ Microbiol. 67, 4930-4933.
- 17. Hirt H, Erlandsen SL, Dunny GM, (2000). Heterologous
inducible expression of Enterococcus faecalis pCF10 aggregation
substance asc10 in Lactococcus lactis and
Streptococcus gordonii contributes to cell hydrophobicity
and adhesion to fibrin. J Bacteriol. 182, 2299-2306.
- 18. Huycke MM, Spiegel CA, Gilmore MS, (1991). Bacteremia
caused by hemolytic, high-level gentamicin-resistant
Enterococcus faecalis. Antimicrob Agent Chemother. 35,
1626-1634.
- 19. Ike Y, Hashimoto H, Clewell DB, (1987). High incidence of
hemolysin production by Enterococcus faecalis strains associated
with human parenteral infections. J Clin Microbiol.
25, 1524-1528.
- 20. Isenmann R, Schwarz M, Rozdzinski E, Marre R, Beger
HG, (2000). Aggregation substance promotes colonic mucosal
invasion of Enterococcus faecalis in an ex vivo model.
J Surg Res. 89, 132-138.
- 21. Jackson CR, Fedorka-Cray PJ, Barrett JB, (2004). Use of a
genus- and species-specific multiplex PCR for identification
of enterococci. J Clin Microbiol. 42, 3558-3565.
- 22. Jett B, Huycke M, Gilmore M, (1994). Virulence of enterococci.
Clin Microbiol Rev. 7, 462-478.
- 23. Jett B, Jensen HG, Nordquist RE, Gilmore MS, (1992).
Contribution of the pAD1-encoded cytolysin to the severity
of experimental Enterococcus faecalis endophthamitis.
Infect Immun. 60, 2445-2452.
- 24. Ke D, Picard FJ, Martineau F, Ménard C, Roy PH, Ouellette
M, Bergeron MG, (1999). Development of a PCR assay for
rapid detection of enterococci. J Clin Microbiol. 37, 3497-
3503.
- 25. Koneman EW, Allen SD, Janda WM, Schreckenberger PC,
Winn WC, (1997). Color Atlas and Textbook of Diagnostic
Microbiology. Lippincott, New York, Fifth Edition, pp:
606.
- 26. Mundy LM, Sahm DF, Gilmore M, (2000). Relationships
between enterococcal virulence and antimicrobial resistance.
Clin Microbiol Rev. 13, 513-522.
- 27. Murray BE, Weinstock GM, (1999). Enterococci: the new
aspects of an old organism. Proceed Assoc Am Physicians.
111, 328-334.
- 28. Olmested S, Dunny G, Erlandsen S, Wells C, (1994). A
plasmid-encoded surface protein on Enterococcus faecalis
augments its internalization by cultured intestinal epiethelial
cells. J Infect Dis. 170, 1549-1556.
- 29. Petts DN, Noble WC, Howell SA, (1997). Potential for gene
transfer among enterococci from a single patient and the
possibility of confounding typing results. J Clin Microbiol.
35, 1722-1727.
- 30. Pinto B, Pierotti R, Canale G, Reali D, (1999).
Characterization of faecal streptococci as indicators of faecal
pollution and distribution in the environment. Lett Appl
Microbiol. 29, 258-263.
- 31. Rakita RM, Vanek NN, Jacques-Palaz K, (1999).
Enterococcus faecalis bearing aggregation substance is resistant
to killing by human neutrophils despite phagocytosis
and neutrophil activation. Infect Immun. 67, 6067-6075.
- 32. Romalde JL, Magarinos B, Nunez S, Barja JL, Toranzo
AE, (1996). Host range susceptibility of Enterococcus sp.
strains isolated from diseased turbot: possible routes of infection.
Appl Environ Microbiol. 62, 607-611.
- 33. Schlievert PM, Gahr PJ, Assimacopoulos AP, Dinges
MM, Stoehr JA, Harmala JW, Hirt H, Dunny GM, (1998).
Aggregation and binding substances enhance pathogenicity
in rabbit models of Enterococcus faecalis endocarditis.
Infect Immun. 66, 218-223.
- 34. Su YA, Sulavik MC, He P, Makinen KK, Makinen PL,
Fiedler S, Wirth R, Clewell DB, (1991). Nucleotide sequence
of the gelatinase gene (gelE) from Enterococcus
faecalis subsp. liquefaciens. Infect Immun. 59, 415-420.
- 35. Thal LA, Chow JW, Mahayni R, Bonilla H, Perri MB,
Donabedian SA, Silverman J, Taber S, Zervos MJ, (1995).
Characterization of antimicrobial resistance in enterococci
of animal origin. Antimicrob Agent Chemother. 39, 2112-
2115.
- 36. Vanek NN, Simon SI, Jacques-Palaz K, Mariscalco MM,
Dunny GM, Rakita RM, (1999). Enterococcus faecalis aggregation
substance promotes opsonin-independent binding
to human neutrophils via a complement receptor type
3-mediated mechanism. FEMS Immun Med Microbiol. 26,
49-60.