Araştırma Makalesi
BibTex RIS Kaynak Göster

Brusella abortus S-19 aşısının liyofilizasyon öncesi farklı liyoprotektanlar ile kritik formülasyon sıcaklıklarının araştırılması

Yıl 2019, Cilt: 30 Sayı: 1, 51 - 57, 30.06.2019
https://doi.org/10.35864/evmd.560109

Öz

Bu çalışmada, Brusella
(B.)abortus
S19 aşı şuşu ile liyoprotektan karışımlarının termal analizi
yapılarak kritik formülasyon sıcaklıklarının belirlenmesi, karşılaştırmalı
sonuçlar ile liyofilizasyon optimizasyonu için istifade edilebilecek bilgilere ulaşılması
amaçlanmıştır. S19 aşısı ile 3 farklı liyoprotektan (mannitol, sukroz,
trehaloz) 3 farklı konsantrasyonda (%5, %10, %15) kullanılarak 9 farklı formülasyonun
analizi termal görüntüleme cihazı olan dondurarak kurutma mikroskopu (FDM) ve Diferansiyel
Termal Analiz (DTA) ile elektriksel direnç(Zsin) analizini sağlayan termal
analiz cihazı ile yapılmıştır. Termal analiz ve görüntüleme cihazların
kullanımıyla elde edilen kritik formülasyon sıcaklıkları ile liyoprotektan
tercihi ve konsantrasyonu arasındaki ilişki araştırılmıştır.  Aşı yarı mamulü ile liyoprotektan karışımları
için formülasyonların kritik sıcaklıklardaki kayda değer farklar, farklı liyoprotektan
kullanıldığında gözlenmiştir. Her liyoprotektanın farklı konsantrasyonları için
ise kurutma prosesinin yeni baştan dizayn edilmesini gerektiren farklar tespit
edilmemiştir. Bu açıdangelecek çalışmalar için oluşturulmuş temel bir reçete üzerinden
protektan madde konsantrasyonunun arttırılarak yapılacak liyofilizasyon
proseslerinin yürütülmesi verim ve stabiliteyi artırabilecektir.

Kaynakça

  • 1.Adams GDJ, CookI, Ward KR, (2015). The Principles of Freeze-Drying. WF Wolkers, H Oldenhofeds. Cryopreservation and Freeze-Drying Protocols. Springer, New York.p. 121-143.
  • 2.Alton GG, Jones LM, Angus RD, Verger JM, (1988).Techniques for the Brucellosis Laboratory. Institut National de la Recherche Agronomique, Paris, France.
  • 3.Bandari S,Seshasai M, Reddy YRC, (2013). Optimization Of Lyophilization Cycles for Gemcitabine. Int J Pharm Pharm Sci. 5(2), 216-221.
  • 4.Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997). Rational Design of Stable Lyophilized Protein Formulatinons: Some Practical Advice. Pharm Res. 14(8), 969-975.
  • 5.Day JG, Stacey GN (2007). Cryopreservation and Freeze-Drying Protocols, Human Press, New Jersey.
  • 6.Deepak B, Iqbal Z, (2015). Lyophilization–Process and Optimization for Pharmaceuticals. IJDRA. 3(1), 30-40.
  • 7.Franks F, (2007). Freeze-drying of pharmaceuticals and biopharmaceuticals, RSC Publishing, Cambridge.
  • 8.Gaidhani KA, Harwalkar M, Bhambere D, Nirgude PS, (2015). Lyophilization/FreezeDrying – A Review. WJPR, 4(8), 516-543.
  • 9.Hajare AA, More HN, Walekar PS, Hajare DA, (2012). Optimization of Freeze Drying Cycle Protocol Using Real Time Microscopy and Integrated Differential Thermal Analysis-Electrical Impedance, Research J Pharm and Tech.5(7),985-991.
  • 10.Horn J, Friess W, (2018). Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization. Front Chem. 6(49), 1-9.
  • 11.Jenings AT, (1999). Lyophilization, Introduction and Basic Principles. CRC Press, Taylor and Francis Group, USA.
  • 12.Karagul MS, Altuntas B, (2018). Liyofilizasyon: Genel Proses Değerlendirmesi Etlik Vet Mikrobiyol Derg. 29(1), 62-69.
  • 13.Kasper JC, Friess W, (2011). The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm.78, 243-268.
  • 14.Lueckel B, Bodmer D, Helk B, Leuenberger H, (1998). Formulations of sugars with amino acids or mannitol - influence of concentration ratio on the properties of the freze-concentrate and the lyophilizate. Pharm Dev Technol, 3(3), 325-336.
  • 15.Meister E, Gieseler H, (2008). A significant comparison between collapse and glass transition temperatures. European Pharmaceutical Review. Erişim:[ https://www.europeanpharmaceuticalreview.com/article/1479/a-significant-comparison-between-collapse-and-glass-transition-temperatures/], Erişim tarihi: 15.04.2018.16.Meister E, Gieseler H, (2009). Freeze-Dry Microscopy of Protein/Sugar Mixtures: Drying Behavior, Interpretation of Collapse Temperatures and a Comparison to Corresponding Glass Transition Data. J Pharm Sci, 98(9), 3072-3087.
  • 17.Mikal MJ (2010). Mechanisms of Protein Stabilization During Freeze Drying Storage:The Relative Importance Thermodynamic Stabilization and Glassy State Relaxation Dynamics. L Rey, JC May eds. Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare, London.p. 198-232
  • 18.Nail SL, Her LM, Proffitt CPB, Nail LL, (1994). An improved microscope stage for direct observation of freezing and freze drying. Pharm Res. 11, 1098-1100.
  • 19.Oetjen GW, (1999). Freze drying. Wiley-VCH, German.
  • 20.Patel SM, Doen T, Pikal MJ, (2009). Determination of End Point of PrimaryDrying in Freeze-Drying Process Control. AAPS Pharm Sci Tech, 11(1),73-84.
  • 21.Rey L (2010). Glimpses into the Realm of Freeze-Drying Classical issues and New Ventures. 1-28. In: L Rey, JC May (Eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London.
  • 22.Ross C, Gaster T, Ward K, (2008). The Importance of Critical Temperatures in the Freeze Drying of Pharmaceutical Products. Erişim:[http://www.biopharma.co.uk/wp-content/uploads/2010/07/importance_critical_temps.pdf], Erişim tarihi: 08.10.2018.
  • 23.Searles JA, (2010). Freezing and Annealing Phenomena in Lyophilization. 52-81.In: L Rey, JC May (Eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London.
  • 24.Tang XC, Pikal MJ, (2004). Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm Res. 21(2), 191-200.
  • 25.United States Patent Office (1959): Use of dextran in freze-drying process. 2,908,614.
  • 26.Wang DQ, (2010). Formulation Characterization. L Rey, JC May eds. Freze Drying/Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London. p. 233-253
  • 27.Ward KR, (2010). The Use of Microscopy, Thermal Analysis, and Impedance Measurements to Establish Critical Formulation Parameters for Freeze-Drying Cycle Development. L Rey, JC May eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London. p. 112-135

Investigating the critical formulation temperatures of Brucella abortus S-19 vaccine with different liyoprotectants prior to liyophilisation

Yıl 2019, Cilt: 30 Sayı: 1, 51 - 57, 30.06.2019
https://doi.org/10.35864/evmd.560109

Öz

The aim of this study is to determine the critical temperatures
of formulations composed of B.abortus
S19 vaccine strain and liyoprotectants. It also attempts to obtain the necessary
information that may be beneficial for the optimisation of lyophilisation process
by the help of comparative results among formulations. Thermal analysis of 9
different formulations consisting of S19 strain and each of 3 lyprotectants
(mannitol, sucrose, trehalose) at 3 different concentrations (5%, 10%,15%) was carried
out by freze drying microscopy (FDM), differential thermal analysis (DTA), and electrical
impedance (Zsin) analysis. Correlations between liyoprotectant choice and liyoprotectant
concentration were investigated by the help of critical formulation temperatures
obtained through thermal analysis and screening instruments. Significant differences
in the critical temperature of vaccine with liyoprotectant formulation were observed
when a different liyoprotectant was used. However, differences that require the
redesign of the whole drying process were not observed at the different concentrations
of the same liyoprotectant. For this reason, 
in the quide of a baseline recipe, evaluation of the liyophilisation process
carried out through increasing the amount of liyoprotectant can be recommended to
increase stability and performance.

Kaynakça

  • 1.Adams GDJ, CookI, Ward KR, (2015). The Principles of Freeze-Drying. WF Wolkers, H Oldenhofeds. Cryopreservation and Freeze-Drying Protocols. Springer, New York.p. 121-143.
  • 2.Alton GG, Jones LM, Angus RD, Verger JM, (1988).Techniques for the Brucellosis Laboratory. Institut National de la Recherche Agronomique, Paris, France.
  • 3.Bandari S,Seshasai M, Reddy YRC, (2013). Optimization Of Lyophilization Cycles for Gemcitabine. Int J Pharm Pharm Sci. 5(2), 216-221.
  • 4.Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997). Rational Design of Stable Lyophilized Protein Formulatinons: Some Practical Advice. Pharm Res. 14(8), 969-975.
  • 5.Day JG, Stacey GN (2007). Cryopreservation and Freeze-Drying Protocols, Human Press, New Jersey.
  • 6.Deepak B, Iqbal Z, (2015). Lyophilization–Process and Optimization for Pharmaceuticals. IJDRA. 3(1), 30-40.
  • 7.Franks F, (2007). Freeze-drying of pharmaceuticals and biopharmaceuticals, RSC Publishing, Cambridge.
  • 8.Gaidhani KA, Harwalkar M, Bhambere D, Nirgude PS, (2015). Lyophilization/FreezeDrying – A Review. WJPR, 4(8), 516-543.
  • 9.Hajare AA, More HN, Walekar PS, Hajare DA, (2012). Optimization of Freeze Drying Cycle Protocol Using Real Time Microscopy and Integrated Differential Thermal Analysis-Electrical Impedance, Research J Pharm and Tech.5(7),985-991.
  • 10.Horn J, Friess W, (2018). Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization. Front Chem. 6(49), 1-9.
  • 11.Jenings AT, (1999). Lyophilization, Introduction and Basic Principles. CRC Press, Taylor and Francis Group, USA.
  • 12.Karagul MS, Altuntas B, (2018). Liyofilizasyon: Genel Proses Değerlendirmesi Etlik Vet Mikrobiyol Derg. 29(1), 62-69.
  • 13.Kasper JC, Friess W, (2011). The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm.78, 243-268.
  • 14.Lueckel B, Bodmer D, Helk B, Leuenberger H, (1998). Formulations of sugars with amino acids or mannitol - influence of concentration ratio on the properties of the freze-concentrate and the lyophilizate. Pharm Dev Technol, 3(3), 325-336.
  • 15.Meister E, Gieseler H, (2008). A significant comparison between collapse and glass transition temperatures. European Pharmaceutical Review. Erişim:[ https://www.europeanpharmaceuticalreview.com/article/1479/a-significant-comparison-between-collapse-and-glass-transition-temperatures/], Erişim tarihi: 15.04.2018.16.Meister E, Gieseler H, (2009). Freeze-Dry Microscopy of Protein/Sugar Mixtures: Drying Behavior, Interpretation of Collapse Temperatures and a Comparison to Corresponding Glass Transition Data. J Pharm Sci, 98(9), 3072-3087.
  • 17.Mikal MJ (2010). Mechanisms of Protein Stabilization During Freeze Drying Storage:The Relative Importance Thermodynamic Stabilization and Glassy State Relaxation Dynamics. L Rey, JC May eds. Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare, London.p. 198-232
  • 18.Nail SL, Her LM, Proffitt CPB, Nail LL, (1994). An improved microscope stage for direct observation of freezing and freze drying. Pharm Res. 11, 1098-1100.
  • 19.Oetjen GW, (1999). Freze drying. Wiley-VCH, German.
  • 20.Patel SM, Doen T, Pikal MJ, (2009). Determination of End Point of PrimaryDrying in Freeze-Drying Process Control. AAPS Pharm Sci Tech, 11(1),73-84.
  • 21.Rey L (2010). Glimpses into the Realm of Freeze-Drying Classical issues and New Ventures. 1-28. In: L Rey, JC May (Eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London.
  • 22.Ross C, Gaster T, Ward K, (2008). The Importance of Critical Temperatures in the Freeze Drying of Pharmaceutical Products. Erişim:[http://www.biopharma.co.uk/wp-content/uploads/2010/07/importance_critical_temps.pdf], Erişim tarihi: 08.10.2018.
  • 23.Searles JA, (2010). Freezing and Annealing Phenomena in Lyophilization. 52-81.In: L Rey, JC May (Eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London.
  • 24.Tang XC, Pikal MJ, (2004). Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm Res. 21(2), 191-200.
  • 25.United States Patent Office (1959): Use of dextran in freze-drying process. 2,908,614.
  • 26.Wang DQ, (2010). Formulation Characterization. L Rey, JC May eds. Freze Drying/Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London. p. 233-253
  • 27.Ward KR, (2010). The Use of Microscopy, Thermal Analysis, and Impedance Measurements to Establish Critical Formulation Parameters for Freeze-Drying Cycle Development. L Rey, JC May eds). Freze Drying / Lyophilisation of Pharmaceutical and Biological Products. Informa Healthcare. London. p. 112-135
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Mustafa Sencer Karagül 0000-0001-7215-5229

Buket Eroğlu Bu kişi benim 0000-0001-7748-7898

Yayımlanma Tarihi 30 Haziran 2019
Gönderilme Tarihi 3 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 30 Sayı: 1

Kaynak Göster

APA Karagül, M. S., & Eroğlu, B. (2019). Brusella abortus S-19 aşısının liyofilizasyon öncesi farklı liyoprotektanlar ile kritik formülasyon sıcaklıklarının araştırılması. Etlik Veteriner Mikrobiyoloji Dergisi, 30(1), 51-57. https://doi.org/10.35864/evmd.560109


15430