Review
BibTex RIS Cite

Kanatlı Hayvanlarda Mukozal Bağışıklık

Year 2020, Volume: 31 Issue: 1, 93 - 100, 07.06.2020
https://doi.org/10.35864/evmd.628318

Abstract

Antijenler vücuda mukozal alanlardan girer.
Enfeksiyonlar mukozalarda oluşur ve yayılır. Mukozal lenfoid dokular (MALT),
spesifik ve nonspesifik bağışıklığı birlikte uyararak antijenleri giriş yerinde
yok ederler ve antijenin yayılmasını engeller. Kanatlı hayvanlar sindirim
(GALT), solunum (Harderian bez, CALT, NALT, BALT) ve genital sistemde bulunan
mukozal lenfoid dokuları ile gelişmiş bir mukozal bağışıklık sistemine
sahiptir. Ancak kanatlı hayvanların mukozal lenfoid dokularının özellikleri ve
savunma mekanizmalarına dair sınırlı bilgi vardır. Bu derleme kanatlı
hayvanlarda bulunan mukozal lenfoid dokuları birlikte sunarak enfeksiyonların
önlenmesindeki rolüne ve yeni mukozal aşı stratejileri geliştirilmesine katkıda
bulunacaktır.

Thanks

Bu derleme makalesinin hazırlanmasında desteğini esirgemeyen danışman hocam sayın Prof. Dr. Mehmet AKAN’a teşekkür ederim.

References

  • Amarasinghea A, Abdul-Cadera MS, Almatrouk Z, Van Der Meer F, Cork SC, Gomıs S, Abdul-Careem MF. (2018). Induc- tion of innate host responses characterized by production of interleukin (IL)-1β and recruitment of macrophages to the re- spiratory tract of chickens following infection with infectious bronchitis virus (IBV). Vet Microbiol, 215: 1-10
  • Anastasiadou M, Michailidis G. (2016). Cytokine activation during embryonic development and in hen ovary and vagina during reproductive age and Salmonella infection. Res Vet Sci, 109: 86-93
  • Ansari AR, GE X-H, Huang H-B, Huang X-Y, Zhao X, Peng K-M, Zhong J-M, Liu H-Z. (2016). Effects of lipopolysaccharide on the histomorphology and expression of Toll-like receptor 4 in the chicken trachea and lung. Avian Pathol, 45: 530-537
  • Aytürk (Akar) Ü. (2008). Broylerlerde özefageal tonsillerin ışık mikroskobik yapısı (YL.Tezi), SÜ Sağlık Bilimleri Enstitüsü, Konya
  • Befus AD, Johnston N, Leslie G, Bienenstoc J. (1980). Gut-asso- ciated lymphoid tissue in the chicken. I. Morphology, ontog- eny, and some functional characteristics of Peyer’s patches. J Immunol., 125 : 2626-2632
  • Casteleyn C, Doom M, Lambrechts E, Broeck WV, Cornillie PS, Cornillie P. (2010). Location of gut-associated lymphoid tissue in the 3-month-old chicken: A review. Avian Pathol., 39: 143-150. Crane MJ, Lee KM, Fitzgerald ES, Jamieson AM. (2018). Surviv- ing deadly lung infections: Innate host tolerance mechanisms in the pulmonary system. Front. Immunol, 9: 1421.
  • Çolakoğlu F, Dönmez HH. (2018). Kanatlıların sindirim kanalı lenfoid dokusu. Atatürk Üniversitesi Vet. Bil. Derg, 13:106-111
  • Davison F, Kaspers B, Schat K A eds. (2008). Avian Immunol- ogy. London : Academic Press
  • De Geus ED. (2012). Respiratory immune responses in the chicken; Towards development of mucosal avian influ- enza virus vaccines. [https://dspace.library.uu.nl/hand- le/1874/240656]
  • De Geus ED, Degen WG, Van Haarlem DA, Schrier C, Broere F, Vervelde L. (2015). Distribution patterns of mucosally applied particles and characterization of the antigen presenting cells. Avian Pathol., 44: 222-229
  • De Geus ED, Rebel JMJ, Vervelde L. (2012-a). Induction of re- spiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines. Vet Q, 32: 75-86
  • De Geus ED, Vervelde L. (2013). Regulation of macrophage and dendritic cell function by pathogens and through im- munomodulation in the avian mucosa. Dev Comp Immunol., 41: 341-351
  • Diker S. (2005). İmmunoloji. Ankara, Medisan
  • Dursun N. edt. (2006). Evcil Kuşların Anatomisi. Ankara, Me- disan.
  • Fagerland JA. (1992). The role of bronchus-associated lym- phoid tissue in respiratory immunity of chickens and turkey: morphologic and functional studies. [https://lib.dr.iastate. edu/rtd]
  • Fagerland JA, Arp LH. (1993). Structure and development of bronchus-associated lymphoid tissue in chickens. Avian Dis, 37: 8-10.
  • Fagerland JA, Arp LH. (1993). Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: Age- related differences. Reg. Immunol, 5: 28-36
  • Fan X, Liu S, Liu G, Zhao J, Jiao H, Wang X, Son Z. (2015). Vitamin A deficiency impairs mucin expression and suppress- es the mucosal immune function of the respiratory tractin chicks. PloS One, 10: e0139131.
  • Fix AS, Arp LH. (1989). Conjunctiva associated lymphoid tis- sue (CALT) in normal and Bordetella avium infected turkeys. Vet Pathol, 26: 222-230
  • Fix AS, Arp LH. (1991). Morphologic characterization of con- junctiva associated lymphoid tissue (CALT) in chickens. Am J Vet Res.
  • Gaunson JE, Philip C, Whithear KG, Browning GF. (2000). Lymphocytic infiltration in the chicken trachea in response to Mycoplasma gallisepticum infection. Microbiology, 146: 1223-1229
  • Gayet R, Bioley G, Rochereau N, Paul S, Corthesy B. (2017). Vaccination aganist Salmonella infection: the mucosal way. Microbiol Mol Biol Rev, 81:e00007-17
  • Gurjar RS. (2013). Cell mediated immunity after ocular Ark- type infectious bronchitis virus vaccination. [http://hdl.hand- le.net/10415/35379]
  • Javed MA, Frasca S, JR, Rood D, Cecchini K, Gladd M, Geary SJ, Silbart LK. (2005). Correlates of immune protection in chick- ens vaccinated with Mycoplasma gallisepticum strain GT5 fol- lowing challenge with pathogenic M. gallisepticum strain R (low). Infect Immun, 73: 5410-5419.
  • Jawale CV, Lee JH. (2014). An immunogenic Salmonella ghost confers protection against internal organ colonization and egg contamination. Vet Immunol Immunopathol, 162: 41-50
  • Johnston CE, Hartley C, Salisbury AM, Wigley P. (2012). Im- munological Changes at Point-of-Lay Increase Susceptibility to Salmonella enterica Serovar Enteritidis Infection in Vcci- nated Chickens. Plos One, 7: e48195.
  • Kaiser P. (2010). Advances in avian immunology-prospects for disease control: a review. Avian Pathol., 39: 309-324
  • Kaiser P. (2012). The long view: a bright, a brighter future? Forty years of chicken immunology pre-and post-genome. Avian Pathol., 41: 511-518
  • Kang H, Yan M, Yu Q, Yang Q. (2013). Characteristics of nasal- associated lymphoid tissue (NALT) and nasal absorption ca- pacity in chicken. PloS One, 8: e84097.
  • Kang H, Yan M, Yu Q, Yang Q. (2014). Characterization of na- sal cavity-associated lymphoid tissue in ducks. Anal Rec, 297: 916-924
  • Khan MZ, Hashımoto Y, Konno A, Kon Y, Iwanaga T. (1996). Development of T-lymphocyte subpopulations in the post- natal chicken oviduct. Cell Tissue Res, 284: 317-325.
  • Kimijima T, Hashımoto Y, Kitagawa H, Kon Y, Sugimura M. (1990). Localization of immunoglobulins in the chicken ovi- duct. Nihon Juigaku Zasshi, 52: 299-305. Kitagawa H, Hosokawa M, Takeuchi T, Yokoyama T, Imagawa T, Uehara M. (2003). The cellular differentiation of M cells from crypt undifferentiated epithelial cells into microvillous epithelial cells in follicle-associated epithelia of chicken cecal tonsils. J. Vet. 35- Med, 65: 171-178.
  • Kimura S. (2018). Molecular insights into the mechanisms of M-cell differentiation and transcytosis in the mucosa-associ- ated lymphoid tissues. Anat Sci Int, 93: 23-34
  • Kozlu T, Altunay H. (2010). Harder Bezi’nin yapısı ve fonksiyonları. Atatürk Üniversitesi Vet. Bil. Derg, 5: 89-96
  • Kozuka Y, Nasu T, Murakami T, Yasuda M. (2010). Compara- tive studies on the secondary lymphoid tissue areas in the chicken bursa of Fabricius and calf ileal Peyer’s patch. Vet Im- munol Immunopathol., 133: 190-197
  • Krunkosky M, Garcia M, Garza LG, Karpuzoglu BE, Levin J, Wil- liams RJ, Gogal JR RM. (2018). Seeding of the mucosal leuko- cytes in the HALT and trachea of White Leghorn chickens. J Immunoassay Immunochem, 39: 43-57.
  • Kumar S, Chen C, Indugu N, Werlang GO, Singh M, Kim WK, Thippareddi H. (2018). Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth per- formance and prevalence of foodborne pathogens. Plos One, 13: e0192450
  • Kunisawa J, Kurashima Y, Kiyono H. (2012). Gut-associated lymphoid tissues for the development of oral vaccines: Adv Drug Deliv Rev., 64: 523-530.
  • Lamichhane A, Azegami T, Kiyono H. (2014). The mucosal im- mune system for vaccine development. Vaccine, 32.
  • Liu YJ, Johnson GD, Gordon J, Maclennan ICM. (1992). Germi- nal centres in T-cell-dependent antibody responses. Immu- nol Today, 13: 17-21
  • Lillehoj HS, Lillehoj EP. (2000). Avian Coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Dis., 44: 408-425.
  • Lillehoj HS, Trout JM. (1996). Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev., 349-360. Maslak DM. (1994). Head-associated lymphoid tissue [HALT] of the chicken: Characterization of lymphocytes: Iowa State Unıversty.
  • Mutua MP, Muya S, Gicheru MM. (2016). Protective roles of free avian respiratory macrophages in captive birds. Biologi- cal Research, 49: 29.
  • Nagy N, Olah I. (2007). Ploric tonsil as a novel gut-associated lymphoepithelial organ of the chicken. J. Anat, 211: 407-411
  • Nii T, Isobe N, Yoshimura Y. (2015). The effect of estrogen on the early cytotoxic response to IB virus infection in hen oviduct. Vet Immunol Immunopathol, 164: 56-66.
  • Nochi T, Jansen CA, Toyomizu M, Van Eden W. (2018). The well-developed mucosal immune systems of birds and mam- mals allow for similar approaches of mucosal vaccination in both types of animals. Front Nutr., 5: 60.
  • Ohshima K, Hiramatsu K. (2000). Distribution of T-cell subsets and immunoglobulin-containing cells in nasal-associated lymphoid tissue (NALT) of chickens . Histol Histopathol, 15: 713-720.
  • Ohshima K, Hiramatsu K. (2002). Immunohistochemical lo- calization of three different immunoglobulin classes in the Harderian gland of young chickens. Tissue & Cell, 34: 129- 133.
  • Olah I, Scott T, Gallego M, Kendall C, Glick B. (1992). Plasma Cells Expressing Immunoglobulins M and A but Immuno- globulin G Develop an Intimate Relationship with Central Ca- nal Epithelium in the Harderian Gland of the Chicken. Poult Sci. 71: 664676.
  • Pavot V, Rochereau N, Genin C, Verrier B, Paul S. (2012). New insights in mucosal vaccine development. Vaccine, 30: 142- 154
  • Qin T, Yin Y, Wang X, Liu H, Lin J, Yu Q, Yang Q. (2015). Whole inactivated Avian Influenza H9N2 viruses induce nasal sub- mucosal dendritic cells to sample luminal viruses via tran- sepithelial dendrites and trigger subsequent DC maturation. Vaccine, 33: 1382-1392.
  • Rauw F, Nguyen T, Ngabirano E, Marche S, Lambrecht B. (2017). Specific antibody-mediated immunity in the repro- ductive tract of laying chickens immunized against New- castle disease with conventional attenuated and inactivated vaccines. Avian Pathol, 46: 434-441.
  • Reese S, Dalamani G, Kaspers B. (2006).The avian lung-associ- ated immune system: A review. Vet. Res, 37: 311-324.
  • Saatçi F, Bozkır A. (2003). Aşıların nazal yoldan uygulanışı: Ankara Ecz. Fak. Derg., 3: 32
  • Sepahi A, Salinas I. (2016). The evolution of nasal immune systems in vertebrates. Molecular Immunology, 69: 131-138.
  • Shakya AK, Chowdhury MYE, Tao W, Gill HS. (2016). Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release, 240: 394-413.
  • Shira E, Friedman A. (2018). Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian di- gestive tract. PLoS ONE, 13: e0200393.
  • Smialek M, Tykalowski B, Stenzel T, Koncicki A. (2011). Local immunity of the respiratory mucosal system in chickens and turkeys. Polish J Vet Sci, 14: 291-297
  • Tamura S-I, Kurata T. (2004). Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Jpn. J. Infect. Dis, 57: 236-247.
  • Van Ginkel F, Gulley S, Lammers A, Hoerr F, Gurjar R, Toro H. (2012). Conjunctiva-associated lymphoid tissue in avian mu- cosal immunity. Dev Comp Immunol., 36: 289-297.
  • Wang J, Tang C, Wang Q, Li R, Chen Z, Han X, Wang J, Xu X. (2015). Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus. Vet. Microbiol, 177: 302-314.
  • Wigley P, Hulme SD, Powers C, Beal RK, Berchieri A, JR, Smith A, Barrow P. (2005). Infection of the Reproductive Tract and Eggs with Salmonella enterica Serovar Pullorum in the Chick- en Is Associated with Suppression of Cellular Immunity at Sexual Maturity. Infect Immun, 73: 2986-299
  • Withanage GS, Sasai K, Fukata T, Miyamoto T, Lillehoj HS, Baba E. (2003). Increased lymphocyte subpopulations and macrophages in the ovaries and oviducts of laying hens in- fected with Salmonella enterica serovar Enteritidis. 32: 583- 590
  • Withanage G, Baba E, Sasai K, Fukata T, Kuwamura M, Miya- moto T, Arakawa A. (1997). Localization and Enumeration of T and B Lymphocytes in the Reproductive Tract of Laying Hens. Poult Sci., 76: 671-676.
  • Yılmaz H, Mutuş R, Minbay A. (1995). Tavuklarda plazma hücrelerinin immunoperoksidaz yöntemi ile belirlenmesi ve lenfoid dokulardaki lokalizasyonu. İstanbul Ünv. Vet. Fak. Derg., 1: 282-294
  • Yoshimura Y. (2015). Avian Beta-defensins expression for the innate immune system in hen reproductive organs. Poult Sci., 94: 804-809.
  • Zhao K, Rong G, Hao Y, Yu L, Kang H, Wang X, Wang X, Jin Z, Ren Z, Li Z. (2016). IgA response and protection following na- sal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanopar- ticles. Sci Rep., 6: 25720/ DOI:10.1038/srep25720.

Mucosal immunity in poultry

Year 2020, Volume: 31 Issue: 1, 93 - 100, 07.06.2020
https://doi.org/10.35864/evmd.628318

Abstract

Antigens enter the body throught the mucosal surfaces. Infections occur and spread in mucosal surfaces. Mucosal lymphoid tissues (MALT), prevent specific and nonspecific immunity from spreading the antigens at the site of introduction by stimulating together. Poultry animals have a mucosal immune system developed with digestion (GALT), respiratory (Harderian gland, CALT, NALT, BALT) and mucosal lymphoid tissues found in the genital system. However, there are limited information about the properties and defense mechanisms of mucosal lymphoid tissues of poultry. This review will contribute to the role of prevention of infections and the development of novel mucosal vaccine strategies by presenting mucosal lymphoid tissues in poultry.

References

  • Amarasinghea A, Abdul-Cadera MS, Almatrouk Z, Van Der Meer F, Cork SC, Gomıs S, Abdul-Careem MF. (2018). Induc- tion of innate host responses characterized by production of interleukin (IL)-1β and recruitment of macrophages to the re- spiratory tract of chickens following infection with infectious bronchitis virus (IBV). Vet Microbiol, 215: 1-10
  • Anastasiadou M, Michailidis G. (2016). Cytokine activation during embryonic development and in hen ovary and vagina during reproductive age and Salmonella infection. Res Vet Sci, 109: 86-93
  • Ansari AR, GE X-H, Huang H-B, Huang X-Y, Zhao X, Peng K-M, Zhong J-M, Liu H-Z. (2016). Effects of lipopolysaccharide on the histomorphology and expression of Toll-like receptor 4 in the chicken trachea and lung. Avian Pathol, 45: 530-537
  • Aytürk (Akar) Ü. (2008). Broylerlerde özefageal tonsillerin ışık mikroskobik yapısı (YL.Tezi), SÜ Sağlık Bilimleri Enstitüsü, Konya
  • Befus AD, Johnston N, Leslie G, Bienenstoc J. (1980). Gut-asso- ciated lymphoid tissue in the chicken. I. Morphology, ontog- eny, and some functional characteristics of Peyer’s patches. J Immunol., 125 : 2626-2632
  • Casteleyn C, Doom M, Lambrechts E, Broeck WV, Cornillie PS, Cornillie P. (2010). Location of gut-associated lymphoid tissue in the 3-month-old chicken: A review. Avian Pathol., 39: 143-150. Crane MJ, Lee KM, Fitzgerald ES, Jamieson AM. (2018). Surviv- ing deadly lung infections: Innate host tolerance mechanisms in the pulmonary system. Front. Immunol, 9: 1421.
  • Çolakoğlu F, Dönmez HH. (2018). Kanatlıların sindirim kanalı lenfoid dokusu. Atatürk Üniversitesi Vet. Bil. Derg, 13:106-111
  • Davison F, Kaspers B, Schat K A eds. (2008). Avian Immunol- ogy. London : Academic Press
  • De Geus ED. (2012). Respiratory immune responses in the chicken; Towards development of mucosal avian influ- enza virus vaccines. [https://dspace.library.uu.nl/hand- le/1874/240656]
  • De Geus ED, Degen WG, Van Haarlem DA, Schrier C, Broere F, Vervelde L. (2015). Distribution patterns of mucosally applied particles and characterization of the antigen presenting cells. Avian Pathol., 44: 222-229
  • De Geus ED, Rebel JMJ, Vervelde L. (2012-a). Induction of re- spiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines. Vet Q, 32: 75-86
  • De Geus ED, Vervelde L. (2013). Regulation of macrophage and dendritic cell function by pathogens and through im- munomodulation in the avian mucosa. Dev Comp Immunol., 41: 341-351
  • Diker S. (2005). İmmunoloji. Ankara, Medisan
  • Dursun N. edt. (2006). Evcil Kuşların Anatomisi. Ankara, Me- disan.
  • Fagerland JA. (1992). The role of bronchus-associated lym- phoid tissue in respiratory immunity of chickens and turkey: morphologic and functional studies. [https://lib.dr.iastate. edu/rtd]
  • Fagerland JA, Arp LH. (1993). Structure and development of bronchus-associated lymphoid tissue in chickens. Avian Dis, 37: 8-10.
  • Fagerland JA, Arp LH. (1993). Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: Age- related differences. Reg. Immunol, 5: 28-36
  • Fan X, Liu S, Liu G, Zhao J, Jiao H, Wang X, Son Z. (2015). Vitamin A deficiency impairs mucin expression and suppress- es the mucosal immune function of the respiratory tractin chicks. PloS One, 10: e0139131.
  • Fix AS, Arp LH. (1989). Conjunctiva associated lymphoid tis- sue (CALT) in normal and Bordetella avium infected turkeys. Vet Pathol, 26: 222-230
  • Fix AS, Arp LH. (1991). Morphologic characterization of con- junctiva associated lymphoid tissue (CALT) in chickens. Am J Vet Res.
  • Gaunson JE, Philip C, Whithear KG, Browning GF. (2000). Lymphocytic infiltration in the chicken trachea in response to Mycoplasma gallisepticum infection. Microbiology, 146: 1223-1229
  • Gayet R, Bioley G, Rochereau N, Paul S, Corthesy B. (2017). Vaccination aganist Salmonella infection: the mucosal way. Microbiol Mol Biol Rev, 81:e00007-17
  • Gurjar RS. (2013). Cell mediated immunity after ocular Ark- type infectious bronchitis virus vaccination. [http://hdl.hand- le.net/10415/35379]
  • Javed MA, Frasca S, JR, Rood D, Cecchini K, Gladd M, Geary SJ, Silbart LK. (2005). Correlates of immune protection in chick- ens vaccinated with Mycoplasma gallisepticum strain GT5 fol- lowing challenge with pathogenic M. gallisepticum strain R (low). Infect Immun, 73: 5410-5419.
  • Jawale CV, Lee JH. (2014). An immunogenic Salmonella ghost confers protection against internal organ colonization and egg contamination. Vet Immunol Immunopathol, 162: 41-50
  • Johnston CE, Hartley C, Salisbury AM, Wigley P. (2012). Im- munological Changes at Point-of-Lay Increase Susceptibility to Salmonella enterica Serovar Enteritidis Infection in Vcci- nated Chickens. Plos One, 7: e48195.
  • Kaiser P. (2010). Advances in avian immunology-prospects for disease control: a review. Avian Pathol., 39: 309-324
  • Kaiser P. (2012). The long view: a bright, a brighter future? Forty years of chicken immunology pre-and post-genome. Avian Pathol., 41: 511-518
  • Kang H, Yan M, Yu Q, Yang Q. (2013). Characteristics of nasal- associated lymphoid tissue (NALT) and nasal absorption ca- pacity in chicken. PloS One, 8: e84097.
  • Kang H, Yan M, Yu Q, Yang Q. (2014). Characterization of na- sal cavity-associated lymphoid tissue in ducks. Anal Rec, 297: 916-924
  • Khan MZ, Hashımoto Y, Konno A, Kon Y, Iwanaga T. (1996). Development of T-lymphocyte subpopulations in the post- natal chicken oviduct. Cell Tissue Res, 284: 317-325.
  • Kimijima T, Hashımoto Y, Kitagawa H, Kon Y, Sugimura M. (1990). Localization of immunoglobulins in the chicken ovi- duct. Nihon Juigaku Zasshi, 52: 299-305. Kitagawa H, Hosokawa M, Takeuchi T, Yokoyama T, Imagawa T, Uehara M. (2003). The cellular differentiation of M cells from crypt undifferentiated epithelial cells into microvillous epithelial cells in follicle-associated epithelia of chicken cecal tonsils. J. Vet. 35- Med, 65: 171-178.
  • Kimura S. (2018). Molecular insights into the mechanisms of M-cell differentiation and transcytosis in the mucosa-associ- ated lymphoid tissues. Anat Sci Int, 93: 23-34
  • Kozlu T, Altunay H. (2010). Harder Bezi’nin yapısı ve fonksiyonları. Atatürk Üniversitesi Vet. Bil. Derg, 5: 89-96
  • Kozuka Y, Nasu T, Murakami T, Yasuda M. (2010). Compara- tive studies on the secondary lymphoid tissue areas in the chicken bursa of Fabricius and calf ileal Peyer’s patch. Vet Im- munol Immunopathol., 133: 190-197
  • Krunkosky M, Garcia M, Garza LG, Karpuzoglu BE, Levin J, Wil- liams RJ, Gogal JR RM. (2018). Seeding of the mucosal leuko- cytes in the HALT and trachea of White Leghorn chickens. J Immunoassay Immunochem, 39: 43-57.
  • Kumar S, Chen C, Indugu N, Werlang GO, Singh M, Kim WK, Thippareddi H. (2018). Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth per- formance and prevalence of foodborne pathogens. Plos One, 13: e0192450
  • Kunisawa J, Kurashima Y, Kiyono H. (2012). Gut-associated lymphoid tissues for the development of oral vaccines: Adv Drug Deliv Rev., 64: 523-530.
  • Lamichhane A, Azegami T, Kiyono H. (2014). The mucosal im- mune system for vaccine development. Vaccine, 32.
  • Liu YJ, Johnson GD, Gordon J, Maclennan ICM. (1992). Germi- nal centres in T-cell-dependent antibody responses. Immu- nol Today, 13: 17-21
  • Lillehoj HS, Lillehoj EP. (2000). Avian Coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Dis., 44: 408-425.
  • Lillehoj HS, Trout JM. (1996). Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev., 349-360. Maslak DM. (1994). Head-associated lymphoid tissue [HALT] of the chicken: Characterization of lymphocytes: Iowa State Unıversty.
  • Mutua MP, Muya S, Gicheru MM. (2016). Protective roles of free avian respiratory macrophages in captive birds. Biologi- cal Research, 49: 29.
  • Nagy N, Olah I. (2007). Ploric tonsil as a novel gut-associated lymphoepithelial organ of the chicken. J. Anat, 211: 407-411
  • Nii T, Isobe N, Yoshimura Y. (2015). The effect of estrogen on the early cytotoxic response to IB virus infection in hen oviduct. Vet Immunol Immunopathol, 164: 56-66.
  • Nochi T, Jansen CA, Toyomizu M, Van Eden W. (2018). The well-developed mucosal immune systems of birds and mam- mals allow for similar approaches of mucosal vaccination in both types of animals. Front Nutr., 5: 60.
  • Ohshima K, Hiramatsu K. (2000). Distribution of T-cell subsets and immunoglobulin-containing cells in nasal-associated lymphoid tissue (NALT) of chickens . Histol Histopathol, 15: 713-720.
  • Ohshima K, Hiramatsu K. (2002). Immunohistochemical lo- calization of three different immunoglobulin classes in the Harderian gland of young chickens. Tissue & Cell, 34: 129- 133.
  • Olah I, Scott T, Gallego M, Kendall C, Glick B. (1992). Plasma Cells Expressing Immunoglobulins M and A but Immuno- globulin G Develop an Intimate Relationship with Central Ca- nal Epithelium in the Harderian Gland of the Chicken. Poult Sci. 71: 664676.
  • Pavot V, Rochereau N, Genin C, Verrier B, Paul S. (2012). New insights in mucosal vaccine development. Vaccine, 30: 142- 154
  • Qin T, Yin Y, Wang X, Liu H, Lin J, Yu Q, Yang Q. (2015). Whole inactivated Avian Influenza H9N2 viruses induce nasal sub- mucosal dendritic cells to sample luminal viruses via tran- sepithelial dendrites and trigger subsequent DC maturation. Vaccine, 33: 1382-1392.
  • Rauw F, Nguyen T, Ngabirano E, Marche S, Lambrecht B. (2017). Specific antibody-mediated immunity in the repro- ductive tract of laying chickens immunized against New- castle disease with conventional attenuated and inactivated vaccines. Avian Pathol, 46: 434-441.
  • Reese S, Dalamani G, Kaspers B. (2006).The avian lung-associ- ated immune system: A review. Vet. Res, 37: 311-324.
  • Saatçi F, Bozkır A. (2003). Aşıların nazal yoldan uygulanışı: Ankara Ecz. Fak. Derg., 3: 32
  • Sepahi A, Salinas I. (2016). The evolution of nasal immune systems in vertebrates. Molecular Immunology, 69: 131-138.
  • Shakya AK, Chowdhury MYE, Tao W, Gill HS. (2016). Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release, 240: 394-413.
  • Shira E, Friedman A. (2018). Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian di- gestive tract. PLoS ONE, 13: e0200393.
  • Smialek M, Tykalowski B, Stenzel T, Koncicki A. (2011). Local immunity of the respiratory mucosal system in chickens and turkeys. Polish J Vet Sci, 14: 291-297
  • Tamura S-I, Kurata T. (2004). Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Jpn. J. Infect. Dis, 57: 236-247.
  • Van Ginkel F, Gulley S, Lammers A, Hoerr F, Gurjar R, Toro H. (2012). Conjunctiva-associated lymphoid tissue in avian mu- cosal immunity. Dev Comp Immunol., 36: 289-297.
  • Wang J, Tang C, Wang Q, Li R, Chen Z, Han X, Wang J, Xu X. (2015). Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus. Vet. Microbiol, 177: 302-314.
  • Wigley P, Hulme SD, Powers C, Beal RK, Berchieri A, JR, Smith A, Barrow P. (2005). Infection of the Reproductive Tract and Eggs with Salmonella enterica Serovar Pullorum in the Chick- en Is Associated with Suppression of Cellular Immunity at Sexual Maturity. Infect Immun, 73: 2986-299
  • Withanage GS, Sasai K, Fukata T, Miyamoto T, Lillehoj HS, Baba E. (2003). Increased lymphocyte subpopulations and macrophages in the ovaries and oviducts of laying hens in- fected with Salmonella enterica serovar Enteritidis. 32: 583- 590
  • Withanage G, Baba E, Sasai K, Fukata T, Kuwamura M, Miya- moto T, Arakawa A. (1997). Localization and Enumeration of T and B Lymphocytes in the Reproductive Tract of Laying Hens. Poult Sci., 76: 671-676.
  • Yılmaz H, Mutuş R, Minbay A. (1995). Tavuklarda plazma hücrelerinin immunoperoksidaz yöntemi ile belirlenmesi ve lenfoid dokulardaki lokalizasyonu. İstanbul Ünv. Vet. Fak. Derg., 1: 282-294
  • Yoshimura Y. (2015). Avian Beta-defensins expression for the innate immune system in hen reproductive organs. Poult Sci., 94: 804-809.
  • Zhao K, Rong G, Hao Y, Yu L, Kang H, Wang X, Wang X, Jin Z, Ren Z, Li Z. (2016). IgA response and protection following na- sal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanopar- ticles. Sci Rep., 6: 25720/ DOI:10.1038/srep25720.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Review
Authors

Zeynep Şık 0000-0002-9010-7586

Publication Date June 7, 2020
Submission Date October 2, 2019
Published in Issue Year 2020 Volume: 31 Issue: 1

Cite

APA Şık, Z. (2020). Kanatlı Hayvanlarda Mukozal Bağışıklık. Etlik Veteriner Mikrobiyoloji Dergisi, 31(1), 93-100. https://doi.org/10.35864/evmd.628318

download