Derleme
BibTex RIS Kaynak Göster

Anticoagulant Rodenticide Poisoning in Wild Animals

Yıl 2021, Cilt: 32 Sayı: 1, 89 - 98, 30.06.2021
https://doi.org/10.35864/evmd.883952

Öz

Anticoagulant rodenticides are often used in rodent control. Pets such as cats, dogs or birds such as sparrows and pigeons can be poisoned accidentally by consuming rodenticide bait which is regarded as primary poisoning. Wild animals such as owls, foxes, jackals, on the other hand, usually hunt rodents and have no interest in baits. When a rodent consumes an anticoagulant rodenticide bait, it exhibits abnormal behaviours such as movement disorders, reduced flight response, and usually dies within a few days. Thus, the poisoned rodents can easily be hunted by the predators. However, the rodenticides that already have accumulated in the liver of the rodent may also poison the predator which is referred to as secondary poisoning. Secondary poisoning occurs more frequently, especially where human settlements and wildlife are intersecting. In this review, we evaluated the published data of rodenticide poisoning in animals and showed the risks of anticoagulant rodenticides, particularly in the case of wildlife. Many studies have reported both primary and secondary rodenticide poisoning in both domestic and wild animal species in many parts of Europe, America, Australia. There is, however, no report on rodenticide poisoning in wild animals in Turkey.

Kaynakça

  • Albert CA, Wilson LK, Mineau P, Trudeau S, Elliott JE. (2010). Anticoagulant rodenticides in three owl species from western Canada, 1988–2003. Arch Environ Contam Toxicol. 58(2), 451-459.
  • Alomar H, Chabert A, Coeurdassier M, Vey D, Berny P. (2018). Accumulation of anticoagulant rodenticides (chlorophacinone, bromadiolone and brodifacoum) in a non-target invertebrate, the slug, Deroceras reticulatum. Sci Total Environ. 610, 576-582.
  • Altay S, Velibey Y, Cakmak HA, Boz GC, Koca S. (2012). Prolonged coagulopathy related to coumarin rodenticide in a young patient: superwarfarin poisoning: case report-online article. Cardiovasc J Afr. 23(9), 9-11.
  • Altıparmak B, Uysal AI, Tarakçı E, Sahan L, Demirbilek S. (2016). Rodentisit (Fare Zehiri) ve Etilen Glikol (Antifriz) İle İntihar Girişimi. J Anesth. 24(3), 200-203.
  • Bahadır A, Akca Ö, Bülbül İ, Kahveci R, Özkara A. (2015). Supervarfarinin cilt emilimi sonucu ortaya çıkan INR yüksekliği ve vitamin K eksikliği: Olgu sunumu. Medeniyet Med J. 30(2), 99-101.
  • Barnett S. (1988). Exploring, sampling, neophobia, and feeding. Prakash I . eds. Rodent pest management. CRC press, Boca Raton. p. 296-317.
  • Berny P, Velardo J, Pulce C, D'amico A, Kammerer M, Lasseur R. (2010). Prevalence of anticoagulant rodenticide poisoning in humans and animals in France and substances involved. Clin Toxicol. 48(9), 935-941.
  • Berny PJ, de Oliveira LA, Videmann B, Rossi S. (2006). Assessment of ruminal degradation, oral bioavailability, and toxic effects of anticoagulant rodenticides in sheep. Am J Vet Res. 67(2), 363-371.
  • Blažić T, Jokić G, Götz M, Esther A, Vukša M, Đedović S. (2018). Brodifacoum as a first choice rodenticide for controlling bromadiolone-resistant Mus musculus. J Stored Prod Res. 79, 29-33.
  • Blus LJ, Henny CJ, Grove RA. (1985). Effects of pelletized anticoagulant rodenticides on California quail. J Wildl Dis. 21(4), 391-395.
  • Booth L, Fisher P, Heppelthwaite V, Eason C. (2003). Toxicity and residues of brodifacoum in snails and earthworms. DOC science internal series. 143, 5-14.
  • Boyle CM. (1960). Case of apparent resistance of Rattus norvegicus Berkenhout to anticoagulant poisons. Nature. 188(4749), 517.
  • Brakes C, Smith RH. (2005). Exposure of non‐target small mammals to rodenticides: short‐term effects, recovery and implications for secondary poisoning. J Appl Ecol. 42(1), 118-128.
  • Brooke MdL, Cuthbert R, Harrison G, Gordon C, Taggart M. (2013). Persistence of brodifacoum in cockroach and woodlice: implications for secondary poisoning during rodent eradications. Ecotoxicol Environ Saf. 97, 183-188.
  • Buckle A. (2013). Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Manag Sci. 69(3), 334-341.
  • Buckle AP, Eason C. (2015). Control methods: chemical. A. Buckle ann R. Smith eds. Rodent pests and their control. Second edition. CAB International, United Kingdom. p. 123-154
  • Caldas ED, Rebelo FM, Heliodoro VO, Magalhães AF, Rebelo RM. (2008). Poisonings with pesticides in the Federal District of Brazil. Clin Toxicol. 46(10), 1058-1063.
  • Christensen TK, Lassen P, Elmeros M. (2012). High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch Environ Contam Toxicol. 63(3), 437-444.
  • Cox P, Smith R. (1992). Rodenticide ecotoxicology: pre-lethal effects of anticoagulants on rat behaviour. Proceedings of the Fifteenth Vertebrate Pest Conference, March 3-5, California-USA.
  • Dowding CV, Shore RF, Worgan A, Baker PJ, Harris S. (2010). Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environmental Pollution. 158(1), 161-166.
  • Eisemann JD, Fisher PM, Buckle A, Humphrys S. (2018). An International Perspective on the Regulation of Rodenticides. Van den Brink NW, Elliott JE, Shore RF, Rattner BA eds. Anticoagulant Rodenticides and Wildlife. Springer Inc., p. 287-318.
  • Elmeros M, Christensen TK, Lassen P. (2011). Concentrations of anticoagulant rodenticides in stoats Mustela erminea and weasels Mustela nivalis from Denmark. Sci Total Environ. 409(12), 2373-2378.
  • Elmeros M, Lassen P, Bossi R, Topping CJ. (2018). Exposure of stone marten (Martes foina) and polecat (Mustela putorius) to anticoagulant rodenticides: Effects of regulatory restrictions of rodenticide use. Sci Total Environ. 612, 1358-1364.
  • Feng AY, Himsworth CG. (2014). The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst. 17(1), 149-162.
  • Fourel I, Sage M, Benoit E, Lattard V. (2018). Liver and fecal samples suggest differential exposure of red fox (Vulpes vulpes) to trans-and cis-bromadiolone in areas from France treated with plant protection products. Sci Total Environ. 622, 924-929.
  • Gabriel MW, Woods LW, Poppenga R, Sweitzer RA, Thompson C, Matthews SM, Higley JM, Keller SM, Purcell K, Barrett RH. (2012). Anticoagulant rodenticides on our public and community lands: spatial distribution of exposure and poisoning of a rare forest carnivore. PLoS One. 7(7), e40163.
  • Geduhn A, Jacob J, Schenke D, Keller B, Kleinschmidt S, Esther A. (2015). Relation between intensity of biocide practice and residues of anticoagulant rodenticides in red foxes (Vulpes vulpes). PLoS One. 10(9), e0139191.
  • Gill JE, Kerins GM, MacNicoll AD. (1992). Inheritance of low grade brodifacoum resistance in the Norway rat. The Journal of wildlife management, 809-816.
  • Godfrey M. (1985). Non-target and secondary poisoning hazards of" second generation" anticoagulants. Acta Zool Fenn. 173, 209-212.
  • Grau-Perales A, Levy E, Fenton A, Gallo M. (2019). Dorsal hippocampal damage disrupts the auditory context-dependent attenuation of taste neophobia in mice. Neurobiol Learn Mem. 157, 121-127.
  • Gray A, Eadsforth CV, Dutton AJ, Vaughan JA. (1994). The toxicity of three second‐generation rodenticides to Barn Owls. Pestic Sci. 42(3), 179-184.
  • Greaves J, Rennison B. (1973). Population aspects of warfarin resistance in the brown rat, Rattus norvegicus. Mammal Review. 3(2), 27-29.
  • Griggs AN, Allbaugh RA, Tofflemire KL, Ben‐Shlomo G, Whitley D, Paulsen ME. (2016). Anticoagulant rodenticide toxicity in six dogs presenting for ocular disease. Vet Ophthalmol. 19(1), 73-80.
  • Gupta RC. (2018). Non-anticoagulant rodenticides. R. Gupta, eds. Veterinary Toxicology. Third edition. Elsevier Inc. p. 613-626.
  • Hayes WJ. (1950). Control of Norway rats with residual rodenticide warfarin. Public Health Rep. 65(47), 1537-1555.
  • Hughes J, Sharp E, Taylor M, Melton L, Hartley G. (2013). Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. Ecotoxicology. 22(6), 974-984.
  • Huntington S, Fenik Y, Vohra R, Geller RJ. (2016). Human bromethalin exposures reported to a US Statewide Poison Control System. Clin Toxicol. 54(3), 277-281.
  • Johnston JJ, Pitt WC, Sugihara RT, Eisemann JD, Primus TM, Holmes MJ, Crocker J, Hart A. (2005). Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, USA. Environ Toxicol Chem. 24(6), 1557-1567.
  • Kammerer M, Pouliquen H, Pinault L, Loyau M. (1998). Residues depletion in egg after warfarin ingestion by laying hens. Vet Hum Toxicol. 40(5), 273-275.
  • Kaukeinen DE, Buckle AP. (1992). Evaluations of aversive agents to increase the selectivity of rodenticides, with emphasis on denatonium benzoate (Bitrex®) bittering agent. Proceedings of the Fifteenth Vertebrate Pest Conference, March 3-5, California-USA.
  • King N, Tran M-H. (2015). Long-acting anticoagulant rodenticide (superwarfarin) poisoning: a review of its historical development, epidemiology, and clinical management. Transfus Med Rev. 29(4), 250-258.
  • Kırbaş A, Özkanlar Y, Özkanlar S, Aktaş M. (2012). Bir Köpekte Şiddetli Burun Kanaması ile Seyreden Varfarin Toksikasyonu. Ataturk Univ Vet Bilim Derg. 7(3), 201-209.
  • Kondolot M, Akyıldız B, Görözen F, Kurtoğlu S, Patıroğlu T. (2009). Çocuk acil servisine getirilen zehirlenme olgularının değerlendirilmesi. Cocuk Sagligi ve Hastaliklari Derg. 52(2), 68-64.
  • Kopanke JH, Horak KE, Musselman E, Miller CA, Bennett K, Olver CS, Volker SF, VandeWoude S, Bevins SN. (2018). Effects of low-level brodifacoum exposure on the feline immune response. Sci Rep. 8(1), 1-13.
  • Lefebvre Sb, Fourel I, Queffélec S, Vodovar D, Megarbane B, Benoit E, Siguret V, Lattard V. (2017). Poisoning by anticoagulant rodenticides in humans and animals: causes and consequences. IntechOpen, p. 11-32. DOI: 10.5772/intechopen.69955.
  • Lohr MT. (2018). Anticoagulant rodenticide exposure in an Australian predatory bird increases with proximity to developed habitat. Sci Total Environ. 643, 134-144.
  • López-Perea JJ, Camarero PR, Molina-López RA, Parpal L, Obón E, Solá J, Mateo R. (2015). Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci Total Environ. 511, 259-267.
  • López-Perea JJ, Camarero PR, Sánchez-Barbudo IS, Mateo R. (2019). Urbanization and cattle density are determinants in the exposure to anticoagulant rodenticides of non-target wildlife. Environ Pollut. 244, 801-808.
  • Lund M. (1984). Resistance to the second-generation anticoagulant rodenticides. Proceedings of the Eleventh Vertebrate Pest Conference, March 6-8, California-USA.
  • Ma M, Zhang M, Tang X, Li Z. (2017). Massive neonatal intracranial hemorrhage caused by bromadiolone: A case report. Medicine. 96(45).
  • Macdonald D, Fenn M, Gelling M. (2015). The natural history of rodents: preadaptations to pestilence. A. Buckle ann R. Smith eds. Rodent pests and their control. Second edition. CAB International, United Kingdom. p. 1-18.
  • Martin A, Steed LC, Redfern R, Gill J, Huson L. (1979). Warfarin-resistance genotype determination in the Norway rat, Rattus norvegicus. Lab Anim. 13(3), 209-214.
  • Martínez‐Padilla J, López‐Idiáquez D, López‐Perea JJ, Mateo R, Paz A, Viñuela J. (2017). A negative association between bromadiolone exposure and nestling body condition in common kestrels: management implications for vole outbreaks. Pest Manag Sci. 73(2), 364-370.
  • Mooney J, Lynch MR, Prescott CV, Clegg T, Loughlin M, Hannon B, Moore C, Faulkner R. (2018). VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in Irish populations of Rattus norvegicus and Mus musculus domesticus. Sci Rep. 8(1), 4535.
  • Morgan AM. (2006). Teratogenic effect of the coumarinic anticoagulant rodenticide, racumin in white rats. J Egypt Soc Toxicol. 34, 5-14.
  • Murphy MJ. (2018). Anticoagulant rodenticides. R. Gupta, eds. Veterinary Toxicology. Third edition. Elsevier Inc. p. 583-612.
  • Murray M. (2011). Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey presented to a wildlife clinic in Massachusetts, 2006–2010. J Zoo Wildl Med. 42(1), 88-97.
  • Newton I, Wyllie I, Gray A, Eadsforth CV. (1994). The toxicity of the rodenticide flocoumafen to barn owls and its elimination via pellets. Pestic Sci. 41(3), 187-193.
  • Ng WY, Ching CK, Chong YK, Ng SW, Cheung WL, Mak TWL. (2018). Retrospective Study of the Characteristics of Anticoagulant-Type Rodenticide Poisoning in Hong Kong. J Med Toxicol, 1-11.
  • Ozturk Z, Ugras K. (2018). Pregnancy outcomes after suicide attempts by self-poisoning and drug overdose: experience of a clinical pharmacology consultation service in Izmir, Turkey. J Obstet Gynaecol, 1-3.
  • Özdemir ZN, Şahin U, Merter M, Gündüz M, Ateşağaoğlu B, Beksaç M. (2016). A Case of Superwarfarin Poisoning Due to Repetitive Occupational Dermal Rodenticide Exposure in a Worker. Turk J Hematol. 33(3), 251.
  • Pitt WC, Higashi M, Primus TM. (2011). The effect of cooking on diphacinone residues related to human consumption of feral pig tissues. Food Chem Toxicol. 49(9), 2030-2034.
  • Poessel SA, Breck SW, Fox KA, Gese EM. (2015). Anticoagulant rodenticide exposure and toxicosis in coyotes (Canis latrans) in the Denver metropolitan area. J Wildl Dis. 51(1), 265-268.
  • Prat-Mairet Y, Fourel I, Barrat J, Sage M, Giraudoux P, Coeurdassier M. (2017). Non-invasive monitoring of red fox exposure to rodenticides from scats. Ecol Indic. 72, 777-783.
  • Proulx G, Mackenzie N. (2012). Relative abundance of American badger (Taxidea taxus) and red fox (Vulpes vulpes) in landscapes with high and low rodenticide poisoning levels. Integr Zool. 7(1), 41-47.
  • Rahman NA, Das S, Chaudhari VA, Nandagopal S, Badhe B. (2017). Blending of rodenticide and battery acid–a rare and fatal suicide mix. Egypt J Forensic Sci. 7(1), 8.
  • Rattner BA, Lazarus RS, Elliott JE, Shore RF, van den Brink N. (2014). Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ Sci Technol. 48(15), 8433-8445.
  • Rennison BD, Dubock A. (1978). Field trials of WBA 8119 (PP 581, brodifacoum*) against warfarin-resistant infestations of Rattus norvegicus. Epidemiol Infect. 80(1), 77-82.
  • Riley SP, Bromley C, Poppenga RH, Uzal FA, Whited L, Sauvajot RM. (2007). Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J Wildl Manag. 71(6), 1874-1884.
  • Ruiz-Suárez N, Henríquez-Hernández LA, Valerón PF, Boada LD, Zumbado M, Camacho M, Almeida-González M, Luzardo OP. (2014). Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci Total Environ. 485, 371-376.
  • Sainsbury KA, Shore RF, Schofield H, Croose E, Pereira MG, Sleep D, Kitchener AC, Hantke G, McDonald RA. (2018). Long-term increase in secondary exposure to anticoagulant rodenticides in European polecats Mustela putorius in Great Britain. Environ Pollut. 236, 689-698.
  • Salim H, Noor HM, Hamid NH, Omar D, Kasim A, Abdin C. (2015). The effects of rodenticide residues deposited in eggs of Tyto alba to eggshell thickness. Sains Malays. 44, 559-564.
  • Sánchez-Barbudo IS, Camarero PR, Mateo R. (2012). Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci Total Environ. 420, 280-288.
  • Sarabia J, Sánchez-Barbudo I, Siqueira W, Mateo R, Rollán E, Pizarro M. (2008). Lesions associated with the plexus venosus subcutaneus collaris of pigeons with chlorophacinone toxicosis. Avian Dis. 52(3), 540-543.
  • Saravanan K, Kanakasabai R. (2004). Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to Barn owl, Tyto alba Hartert under captivity. Indian J Exp Biol. 42, 1013-1016.
  • Seljetun KO, Eliassen E, Karinen R, Moe L, Vindenes V. (2018). Quantitative method for analysis of six anticoagulant rodenticides in faeces, applied in a case with repeated samples from a dog. Acta Vet Scand. 60(1), 3.
  • Seljetun KO, Sandvik M, Vindenes V, Eliassen E, Øiestad EL, Madslien K, Moe L. (2020). Comparison of anticoagulant rodenticide concentrations in liver and feces from apparently healthy red foxes. J Vet Diagn Invest. 32(4), 560-564.
  • Shepherd G, Klein-Schwartz W, Anderson BD. (2002). Acute, unintentional pediatric brodifacoum ingestions. Pediatr Emerg Care. 18(3), 174-178.
  • Shore RF, Birks JD, Freestone P. (1999). Exposure of non-target vertebrates to second-generation rodenticides in Britain, with particular reference to the polecat Mustela putorius. N Z J Ecol 199-206.
  • Smith R, Shore R. (2015). Environmental Impacts of Rodenticides. A. Buckle ann R. Smith eds. Rodent pests and their control. Second edition. CAB International, United Kingdom. p. 330-345.
  • Spurr E, Drew K. (1999). Invertebrates feeding on baits used for vertebrate pest control in New Zealand. N Z J Ecol, 167-173.
  • Stansley W, Cummings M, Vudathala D, Murphy LA. (2014). Anticoagulant rodenticides in red-tailed hawks, Buteo jamaicensis, and great horned owls, Bubo virginianus, from New Jersey, USA, 2008–2010. Bull Environ Contam Toxicol. 92(1), 6-9.
  • Stone WB, Okoniewski JC, Stedelin JR. (1999). Poisoning of wildlife with anticoagulant rodenticides in New York. J Wildl Dis. 35(2), 187-193.
  • Svendsen S, Kolstad HA, Steesby E. (2002). Bleeding problems associated with occupational exposure to anticoagulant rodenticides. Int Arch Occup Environ Health. 75(7), 515-517.
  • Thomer AJ, Santoro KB. (2018). Anticoagulant rodenticide toxicosis causing tracheal collapse in 4 small breed dogs. J Vet Emerg Crit Care (San Antonio). 28(6), 573-578.
  • Vries de JX, Schmitz-Kummer E. (1994). Determination of the coumarin anticoagulant phenprocoumon and metabolites in human plasma, urine and breast milk by high-performance liquid chromatography after solid-phase extraction. J Chromatogr B Biomed Sci Appl. 655(1), 63-71.
  • Vyas NB. (2017). Rodenticide incidents of exposure and adverse effects on non-raptor birds. Sci Total Environ. 609, 68-76.
  • Walker J, Beach F. (2002). Deliberate self-poisoning with rodenticide: a diagnostic dilemma. Int J Clin Pract. 56(3), 223-224.
  • Watt BE, Proudfoot AT, Bradberry SM, Vale JA. (2005). Anticoagulant rodenticides. Toxicol Rev. 24(4), 259-269.
  • Xiang L, Min Z, Alan Z, Yaohui W. (2014). Retrospective study of twenty-four patients with prolonged coagulopathy due to long-acting anti-vitamin K rodenticide poisoning. Am J Med Sci. 347(4), 299-304.
  • Yu H-Y, Lin J-L, Fu J-F, Lin J-H, Liu S-H, Weng C-H, Huang W-H, Chen K-H, Hsu C-W, Yen T-H. (2013). Outcomes of patients with rodenticide poisoning at a far east poison center. SpringerPlus. 2(1), 505.
  • Zielinski WJ, Linnell MA, Schwartz MK, Pilgrim K. (2020). Exploiting the winter trophic relationship between weasels (Mustela spp.) and their microtine prey as a survey method for weasels in meadow ecosystems. Northwest Sci. 93(3-4), 185-192.

Yaban Hayvanlarında Antikoagülan Rodentisitler ile Zehirlenmeler

Yıl 2021, Cilt: 32 Sayı: 1, 89 - 98, 30.06.2021
https://doi.org/10.35864/evmd.883952

Öz

Antikoagülan rodentisitler kemirici mücadelesinde sık kullanılmaktadırlar. Tuzak yem formunda uygulanan bu maddeleri kedi, köpek gibi evcil hayvanlar ya da serçe, güvercin gibi kuşlar kazara tüketerek zehirlenebilirler. Bu durum primer (birincil) zehirlenme olarak isimlendirilir. Baykuş, tilki, çakal gibi avcı yaban hayvanları ise genellikle kemiricileri avlayarak beslenir ve tuzak yemlere ilgi göstermezler. Tuzak yemi tüketen kemiriciler anormal davranışlar sergiler; kaçış dürtüsü ve hareket kabiliyeti azalarak genellikle birkaç gün içerisinde ölürler. Böylece avcı hayvanlar tarafından kolaylıkla yakalanabilirler. Ancak kemiricinin karaciğerinde biriken antikoagülan rodentisitler avcı canlıyı da etkileyerek zehirlenmesine sebep olabilmektedir. Bu durum ise sekonder (ikincil) zehirlenme olarak isimlendirilir. Bu derlemede, hayvanlarda antikoagülan rodentisit zehirlenmeleri ile ilgili literatürde bildirilmiş veriler değerlendirilerek antikoagülan rodentisit kullanımından kaynaklanabilecek risk faktörlerini, özellikle yaban hayatı açısından aktarmak amaçlanmıştır. Değerlendirilen birçok çalışmada, Amerika, Avrupa ve Avustralya’nın çeşitli bölgelerinde yaşayan evcil ve yaban hayvanlarında hem primer hem de sekonder antikoagülan rodentisit zehirlenmesi bildirilmiş; ülkemizde ise yaban hayvanlarında antikoagülan rodentisit zehirlenmelerinin araştırıldığı herhangi bir çalışmaya rastlanmamıştır.

Kaynakça

  • Albert CA, Wilson LK, Mineau P, Trudeau S, Elliott JE. (2010). Anticoagulant rodenticides in three owl species from western Canada, 1988–2003. Arch Environ Contam Toxicol. 58(2), 451-459.
  • Alomar H, Chabert A, Coeurdassier M, Vey D, Berny P. (2018). Accumulation of anticoagulant rodenticides (chlorophacinone, bromadiolone and brodifacoum) in a non-target invertebrate, the slug, Deroceras reticulatum. Sci Total Environ. 610, 576-582.
  • Altay S, Velibey Y, Cakmak HA, Boz GC, Koca S. (2012). Prolonged coagulopathy related to coumarin rodenticide in a young patient: superwarfarin poisoning: case report-online article. Cardiovasc J Afr. 23(9), 9-11.
  • Altıparmak B, Uysal AI, Tarakçı E, Sahan L, Demirbilek S. (2016). Rodentisit (Fare Zehiri) ve Etilen Glikol (Antifriz) İle İntihar Girişimi. J Anesth. 24(3), 200-203.
  • Bahadır A, Akca Ö, Bülbül İ, Kahveci R, Özkara A. (2015). Supervarfarinin cilt emilimi sonucu ortaya çıkan INR yüksekliği ve vitamin K eksikliği: Olgu sunumu. Medeniyet Med J. 30(2), 99-101.
  • Barnett S. (1988). Exploring, sampling, neophobia, and feeding. Prakash I . eds. Rodent pest management. CRC press, Boca Raton. p. 296-317.
  • Berny P, Velardo J, Pulce C, D'amico A, Kammerer M, Lasseur R. (2010). Prevalence of anticoagulant rodenticide poisoning in humans and animals in France and substances involved. Clin Toxicol. 48(9), 935-941.
  • Berny PJ, de Oliveira LA, Videmann B, Rossi S. (2006). Assessment of ruminal degradation, oral bioavailability, and toxic effects of anticoagulant rodenticides in sheep. Am J Vet Res. 67(2), 363-371.
  • Blažić T, Jokić G, Götz M, Esther A, Vukša M, Đedović S. (2018). Brodifacoum as a first choice rodenticide for controlling bromadiolone-resistant Mus musculus. J Stored Prod Res. 79, 29-33.
  • Blus LJ, Henny CJ, Grove RA. (1985). Effects of pelletized anticoagulant rodenticides on California quail. J Wildl Dis. 21(4), 391-395.
  • Booth L, Fisher P, Heppelthwaite V, Eason C. (2003). Toxicity and residues of brodifacoum in snails and earthworms. DOC science internal series. 143, 5-14.
  • Boyle CM. (1960). Case of apparent resistance of Rattus norvegicus Berkenhout to anticoagulant poisons. Nature. 188(4749), 517.
  • Brakes C, Smith RH. (2005). Exposure of non‐target small mammals to rodenticides: short‐term effects, recovery and implications for secondary poisoning. J Appl Ecol. 42(1), 118-128.
  • Brooke MdL, Cuthbert R, Harrison G, Gordon C, Taggart M. (2013). Persistence of brodifacoum in cockroach and woodlice: implications for secondary poisoning during rodent eradications. Ecotoxicol Environ Saf. 97, 183-188.
  • Buckle A. (2013). Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Manag Sci. 69(3), 334-341.
  • Buckle AP, Eason C. (2015). Control methods: chemical. A. Buckle ann R. Smith eds. Rodent pests and their control. Second edition. CAB International, United Kingdom. p. 123-154
  • Caldas ED, Rebelo FM, Heliodoro VO, Magalhães AF, Rebelo RM. (2008). Poisonings with pesticides in the Federal District of Brazil. Clin Toxicol. 46(10), 1058-1063.
  • Christensen TK, Lassen P, Elmeros M. (2012). High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch Environ Contam Toxicol. 63(3), 437-444.
  • Cox P, Smith R. (1992). Rodenticide ecotoxicology: pre-lethal effects of anticoagulants on rat behaviour. Proceedings of the Fifteenth Vertebrate Pest Conference, March 3-5, California-USA.
  • Dowding CV, Shore RF, Worgan A, Baker PJ, Harris S. (2010). Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environmental Pollution. 158(1), 161-166.
  • Eisemann JD, Fisher PM, Buckle A, Humphrys S. (2018). An International Perspective on the Regulation of Rodenticides. Van den Brink NW, Elliott JE, Shore RF, Rattner BA eds. Anticoagulant Rodenticides and Wildlife. Springer Inc., p. 287-318.
  • Elmeros M, Christensen TK, Lassen P. (2011). Concentrations of anticoagulant rodenticides in stoats Mustela erminea and weasels Mustela nivalis from Denmark. Sci Total Environ. 409(12), 2373-2378.
  • Elmeros M, Lassen P, Bossi R, Topping CJ. (2018). Exposure of stone marten (Martes foina) and polecat (Mustela putorius) to anticoagulant rodenticides: Effects of regulatory restrictions of rodenticide use. Sci Total Environ. 612, 1358-1364.
  • Feng AY, Himsworth CG. (2014). The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst. 17(1), 149-162.
  • Fourel I, Sage M, Benoit E, Lattard V. (2018). Liver and fecal samples suggest differential exposure of red fox (Vulpes vulpes) to trans-and cis-bromadiolone in areas from France treated with plant protection products. Sci Total Environ. 622, 924-929.
  • Gabriel MW, Woods LW, Poppenga R, Sweitzer RA, Thompson C, Matthews SM, Higley JM, Keller SM, Purcell K, Barrett RH. (2012). Anticoagulant rodenticides on our public and community lands: spatial distribution of exposure and poisoning of a rare forest carnivore. PLoS One. 7(7), e40163.
  • Geduhn A, Jacob J, Schenke D, Keller B, Kleinschmidt S, Esther A. (2015). Relation between intensity of biocide practice and residues of anticoagulant rodenticides in red foxes (Vulpes vulpes). PLoS One. 10(9), e0139191.
  • Gill JE, Kerins GM, MacNicoll AD. (1992). Inheritance of low grade brodifacoum resistance in the Norway rat. The Journal of wildlife management, 809-816.
  • Godfrey M. (1985). Non-target and secondary poisoning hazards of" second generation" anticoagulants. Acta Zool Fenn. 173, 209-212.
  • Grau-Perales A, Levy E, Fenton A, Gallo M. (2019). Dorsal hippocampal damage disrupts the auditory context-dependent attenuation of taste neophobia in mice. Neurobiol Learn Mem. 157, 121-127.
  • Gray A, Eadsforth CV, Dutton AJ, Vaughan JA. (1994). The toxicity of three second‐generation rodenticides to Barn Owls. Pestic Sci. 42(3), 179-184.
  • Greaves J, Rennison B. (1973). Population aspects of warfarin resistance in the brown rat, Rattus norvegicus. Mammal Review. 3(2), 27-29.
  • Griggs AN, Allbaugh RA, Tofflemire KL, Ben‐Shlomo G, Whitley D, Paulsen ME. (2016). Anticoagulant rodenticide toxicity in six dogs presenting for ocular disease. Vet Ophthalmol. 19(1), 73-80.
  • Gupta RC. (2018). Non-anticoagulant rodenticides. R. Gupta, eds. Veterinary Toxicology. Third edition. Elsevier Inc. p. 613-626.
  • Hayes WJ. (1950). Control of Norway rats with residual rodenticide warfarin. Public Health Rep. 65(47), 1537-1555.
  • Hughes J, Sharp E, Taylor M, Melton L, Hartley G. (2013). Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. Ecotoxicology. 22(6), 974-984.
  • Huntington S, Fenik Y, Vohra R, Geller RJ. (2016). Human bromethalin exposures reported to a US Statewide Poison Control System. Clin Toxicol. 54(3), 277-281.
  • Johnston JJ, Pitt WC, Sugihara RT, Eisemann JD, Primus TM, Holmes MJ, Crocker J, Hart A. (2005). Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, USA. Environ Toxicol Chem. 24(6), 1557-1567.
  • Kammerer M, Pouliquen H, Pinault L, Loyau M. (1998). Residues depletion in egg after warfarin ingestion by laying hens. Vet Hum Toxicol. 40(5), 273-275.
  • Kaukeinen DE, Buckle AP. (1992). Evaluations of aversive agents to increase the selectivity of rodenticides, with emphasis on denatonium benzoate (Bitrex®) bittering agent. Proceedings of the Fifteenth Vertebrate Pest Conference, March 3-5, California-USA.
  • King N, Tran M-H. (2015). Long-acting anticoagulant rodenticide (superwarfarin) poisoning: a review of its historical development, epidemiology, and clinical management. Transfus Med Rev. 29(4), 250-258.
  • Kırbaş A, Özkanlar Y, Özkanlar S, Aktaş M. (2012). Bir Köpekte Şiddetli Burun Kanaması ile Seyreden Varfarin Toksikasyonu. Ataturk Univ Vet Bilim Derg. 7(3), 201-209.
  • Kondolot M, Akyıldız B, Görözen F, Kurtoğlu S, Patıroğlu T. (2009). Çocuk acil servisine getirilen zehirlenme olgularının değerlendirilmesi. Cocuk Sagligi ve Hastaliklari Derg. 52(2), 68-64.
  • Kopanke JH, Horak KE, Musselman E, Miller CA, Bennett K, Olver CS, Volker SF, VandeWoude S, Bevins SN. (2018). Effects of low-level brodifacoum exposure on the feline immune response. Sci Rep. 8(1), 1-13.
  • Lefebvre Sb, Fourel I, Queffélec S, Vodovar D, Megarbane B, Benoit E, Siguret V, Lattard V. (2017). Poisoning by anticoagulant rodenticides in humans and animals: causes and consequences. IntechOpen, p. 11-32. DOI: 10.5772/intechopen.69955.
  • Lohr MT. (2018). Anticoagulant rodenticide exposure in an Australian predatory bird increases with proximity to developed habitat. Sci Total Environ. 643, 134-144.
  • López-Perea JJ, Camarero PR, Molina-López RA, Parpal L, Obón E, Solá J, Mateo R. (2015). Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci Total Environ. 511, 259-267.
  • López-Perea JJ, Camarero PR, Sánchez-Barbudo IS, Mateo R. (2019). Urbanization and cattle density are determinants in the exposure to anticoagulant rodenticides of non-target wildlife. Environ Pollut. 244, 801-808.
  • Lund M. (1984). Resistance to the second-generation anticoagulant rodenticides. Proceedings of the Eleventh Vertebrate Pest Conference, March 6-8, California-USA.
  • Ma M, Zhang M, Tang X, Li Z. (2017). Massive neonatal intracranial hemorrhage caused by bromadiolone: A case report. Medicine. 96(45).
  • Macdonald D, Fenn M, Gelling M. (2015). The natural history of rodents: preadaptations to pestilence. A. Buckle ann R. Smith eds. Rodent pests and their control. Second edition. CAB International, United Kingdom. p. 1-18.
  • Martin A, Steed LC, Redfern R, Gill J, Huson L. (1979). Warfarin-resistance genotype determination in the Norway rat, Rattus norvegicus. Lab Anim. 13(3), 209-214.
  • Martínez‐Padilla J, López‐Idiáquez D, López‐Perea JJ, Mateo R, Paz A, Viñuela J. (2017). A negative association between bromadiolone exposure and nestling body condition in common kestrels: management implications for vole outbreaks. Pest Manag Sci. 73(2), 364-370.
  • Mooney J, Lynch MR, Prescott CV, Clegg T, Loughlin M, Hannon B, Moore C, Faulkner R. (2018). VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in Irish populations of Rattus norvegicus and Mus musculus domesticus. Sci Rep. 8(1), 4535.
  • Morgan AM. (2006). Teratogenic effect of the coumarinic anticoagulant rodenticide, racumin in white rats. J Egypt Soc Toxicol. 34, 5-14.
  • Murphy MJ. (2018). Anticoagulant rodenticides. R. Gupta, eds. Veterinary Toxicology. Third edition. Elsevier Inc. p. 583-612.
  • Murray M. (2011). Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey presented to a wildlife clinic in Massachusetts, 2006–2010. J Zoo Wildl Med. 42(1), 88-97.
  • Newton I, Wyllie I, Gray A, Eadsforth CV. (1994). The toxicity of the rodenticide flocoumafen to barn owls and its elimination via pellets. Pestic Sci. 41(3), 187-193.
  • Ng WY, Ching CK, Chong YK, Ng SW, Cheung WL, Mak TWL. (2018). Retrospective Study of the Characteristics of Anticoagulant-Type Rodenticide Poisoning in Hong Kong. J Med Toxicol, 1-11.
  • Ozturk Z, Ugras K. (2018). Pregnancy outcomes after suicide attempts by self-poisoning and drug overdose: experience of a clinical pharmacology consultation service in Izmir, Turkey. J Obstet Gynaecol, 1-3.
  • Özdemir ZN, Şahin U, Merter M, Gündüz M, Ateşağaoğlu B, Beksaç M. (2016). A Case of Superwarfarin Poisoning Due to Repetitive Occupational Dermal Rodenticide Exposure in a Worker. Turk J Hematol. 33(3), 251.
  • Pitt WC, Higashi M, Primus TM. (2011). The effect of cooking on diphacinone residues related to human consumption of feral pig tissues. Food Chem Toxicol. 49(9), 2030-2034.
  • Poessel SA, Breck SW, Fox KA, Gese EM. (2015). Anticoagulant rodenticide exposure and toxicosis in coyotes (Canis latrans) in the Denver metropolitan area. J Wildl Dis. 51(1), 265-268.
  • Prat-Mairet Y, Fourel I, Barrat J, Sage M, Giraudoux P, Coeurdassier M. (2017). Non-invasive monitoring of red fox exposure to rodenticides from scats. Ecol Indic. 72, 777-783.
  • Proulx G, Mackenzie N. (2012). Relative abundance of American badger (Taxidea taxus) and red fox (Vulpes vulpes) in landscapes with high and low rodenticide poisoning levels. Integr Zool. 7(1), 41-47.
  • Rahman NA, Das S, Chaudhari VA, Nandagopal S, Badhe B. (2017). Blending of rodenticide and battery acid–a rare and fatal suicide mix. Egypt J Forensic Sci. 7(1), 8.
  • Rattner BA, Lazarus RS, Elliott JE, Shore RF, van den Brink N. (2014). Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ Sci Technol. 48(15), 8433-8445.
  • Rennison BD, Dubock A. (1978). Field trials of WBA 8119 (PP 581, brodifacoum*) against warfarin-resistant infestations of Rattus norvegicus. Epidemiol Infect. 80(1), 77-82.
  • Riley SP, Bromley C, Poppenga RH, Uzal FA, Whited L, Sauvajot RM. (2007). Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J Wildl Manag. 71(6), 1874-1884.
  • Ruiz-Suárez N, Henríquez-Hernández LA, Valerón PF, Boada LD, Zumbado M, Camacho M, Almeida-González M, Luzardo OP. (2014). Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci Total Environ. 485, 371-376.
  • Sainsbury KA, Shore RF, Schofield H, Croose E, Pereira MG, Sleep D, Kitchener AC, Hantke G, McDonald RA. (2018). Long-term increase in secondary exposure to anticoagulant rodenticides in European polecats Mustela putorius in Great Britain. Environ Pollut. 236, 689-698.
  • Salim H, Noor HM, Hamid NH, Omar D, Kasim A, Abdin C. (2015). The effects of rodenticide residues deposited in eggs of Tyto alba to eggshell thickness. Sains Malays. 44, 559-564.
  • Sánchez-Barbudo IS, Camarero PR, Mateo R. (2012). Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci Total Environ. 420, 280-288.
  • Sarabia J, Sánchez-Barbudo I, Siqueira W, Mateo R, Rollán E, Pizarro M. (2008). Lesions associated with the plexus venosus subcutaneus collaris of pigeons with chlorophacinone toxicosis. Avian Dis. 52(3), 540-543.
  • Saravanan K, Kanakasabai R. (2004). Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to Barn owl, Tyto alba Hartert under captivity. Indian J Exp Biol. 42, 1013-1016.
  • Seljetun KO, Eliassen E, Karinen R, Moe L, Vindenes V. (2018). Quantitative method for analysis of six anticoagulant rodenticides in faeces, applied in a case with repeated samples from a dog. Acta Vet Scand. 60(1), 3.
  • Seljetun KO, Sandvik M, Vindenes V, Eliassen E, Øiestad EL, Madslien K, Moe L. (2020). Comparison of anticoagulant rodenticide concentrations in liver and feces from apparently healthy red foxes. J Vet Diagn Invest. 32(4), 560-564.
  • Shepherd G, Klein-Schwartz W, Anderson BD. (2002). Acute, unintentional pediatric brodifacoum ingestions. Pediatr Emerg Care. 18(3), 174-178.
  • Shore RF, Birks JD, Freestone P. (1999). Exposure of non-target vertebrates to second-generation rodenticides in Britain, with particular reference to the polecat Mustela putorius. N Z J Ecol 199-206.
  • Smith R, Shore R. (2015). Environmental Impacts of Rodenticides. A. Buckle ann R. Smith eds. Rodent pests and their control. Second edition. CAB International, United Kingdom. p. 330-345.
  • Spurr E, Drew K. (1999). Invertebrates feeding on baits used for vertebrate pest control in New Zealand. N Z J Ecol, 167-173.
  • Stansley W, Cummings M, Vudathala D, Murphy LA. (2014). Anticoagulant rodenticides in red-tailed hawks, Buteo jamaicensis, and great horned owls, Bubo virginianus, from New Jersey, USA, 2008–2010. Bull Environ Contam Toxicol. 92(1), 6-9.
  • Stone WB, Okoniewski JC, Stedelin JR. (1999). Poisoning of wildlife with anticoagulant rodenticides in New York. J Wildl Dis. 35(2), 187-193.
  • Svendsen S, Kolstad HA, Steesby E. (2002). Bleeding problems associated with occupational exposure to anticoagulant rodenticides. Int Arch Occup Environ Health. 75(7), 515-517.
  • Thomer AJ, Santoro KB. (2018). Anticoagulant rodenticide toxicosis causing tracheal collapse in 4 small breed dogs. J Vet Emerg Crit Care (San Antonio). 28(6), 573-578.
  • Vries de JX, Schmitz-Kummer E. (1994). Determination of the coumarin anticoagulant phenprocoumon and metabolites in human plasma, urine and breast milk by high-performance liquid chromatography after solid-phase extraction. J Chromatogr B Biomed Sci Appl. 655(1), 63-71.
  • Vyas NB. (2017). Rodenticide incidents of exposure and adverse effects on non-raptor birds. Sci Total Environ. 609, 68-76.
  • Walker J, Beach F. (2002). Deliberate self-poisoning with rodenticide: a diagnostic dilemma. Int J Clin Pract. 56(3), 223-224.
  • Watt BE, Proudfoot AT, Bradberry SM, Vale JA. (2005). Anticoagulant rodenticides. Toxicol Rev. 24(4), 259-269.
  • Xiang L, Min Z, Alan Z, Yaohui W. (2014). Retrospective study of twenty-four patients with prolonged coagulopathy due to long-acting anti-vitamin K rodenticide poisoning. Am J Med Sci. 347(4), 299-304.
  • Yu H-Y, Lin J-L, Fu J-F, Lin J-H, Liu S-H, Weng C-H, Huang W-H, Chen K-H, Hsu C-W, Yen T-H. (2013). Outcomes of patients with rodenticide poisoning at a far east poison center. SpringerPlus. 2(1), 505.
  • Zielinski WJ, Linnell MA, Schwartz MK, Pilgrim K. (2020). Exploiting the winter trophic relationship between weasels (Mustela spp.) and their microtine prey as a survey method for weasels in meadow ecosystems. Northwest Sci. 93(3-4), 185-192.
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Bilimleri
Bölüm Derleme
Yazarlar

Orhan Tokur 0000-0002-0912-3467

Abdurrahman Aksoy 0000-0001-9486-312X

Erken Görünüm Tarihi 7 Ocak 2021
Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 22 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 32 Sayı: 1

Kaynak Göster

APA Tokur, O., & Aksoy, A. (2021). Yaban Hayvanlarında Antikoagülan Rodentisitler ile Zehirlenmeler. Etlik Veteriner Mikrobiyoloji Dergisi, 32(1), 89-98. https://doi.org/10.35864/evmd.883952


15430