Review
BibTex RIS Cite

Kümelenme analizine genel bir bakış

Year 2022, Volume: 33 Issue: 2, 79 - 84, 23.12.2022
https://doi.org/10.35864/evmd.1056351

Abstract

Halk sağlığını etkileyen hastalıkların ortaya çıkmasında etkili olan özelliklerin tanımlanması, hastalıkların daha iyi anlaşılmasına ve kontrol altına alınmasına katkı sağlamaktadır. Bir olayın gerçekleştiği yer, söz konusu olayın neden gerçekleştiğine dair bazı göstergeler sağlayabilmektedir. Hastalıkların yer ve zaman verilerini analiz etmek için spesifik istatistik testler bulunmaktadır. Son 20 yıldır yer ve yer-zaman tarama istatistikleri hastalık kümelenmelerinin belirlenmesi, değerlendirilmesi ve hastalık sürveyansı amacıyla yaygın olarak kullanılmaktadır. Yer ve yer-zaman analizleri bulaşıcı hastalıklarda özellikle de zoonozlarda, hastalık riski veya insidansındaki mekansal ve zamansal çeşitliliğin nedenlerini ve sonuçlarını incelemektedir. Bu derlemede yer ve/veya zamanda beklenenden daha fazla vakaya sahip hastalık kümelerinin tespitinde yaygın olarak kullanılan mekansal tarama istatistiği olan SaTScan yazılımı ve Yer-Zaman Permutasyon Model hakkında bilgiler bir araya getirilmiştir.

References

  • Abrams AM, Kulldorff M, Kleinman K. (2006) Empirical/asymptomatic p-vlues for monte carlo-based hypothesis testing: an application to cluster detection using the scan statistic. Advances in Disease Surveillance. 1: 1.
  • Alton GD, Pearl DL, Bateman KG, Mcnab B, Berke O. (2013) Comparison of covariate adjustment methods using space-time scan statistics for food animal syndromic surveillance. BMC Veterinary Research. 9: 231.
  • Block R. (2007) Scanning for clusters in space and time, A tutorial review of SaTScan. Social Science Computer Review. 25: 272-278.
  • Carpenter TE. (2011) The spatial epidemiologic (r)evolution: A look back in time and forward to the future. Spatial and Spatio-temporal Epidemiology. 2: 119-124.
  • Cheng T, Adepeju M. (2013) Detecting emerging space-time crime patterns by prospective STSS. Erişim Adresi: [https://pdfs.semanticscholar.org/3304/bd580504688ec06265c1f4cdc7b94c9c475d.pdf?_ga= 1309437.717547166.1563568558-1765960572.1561041528]. Erişim Tarihi: 01/01/2021.
  • Costa MA, Kulldorff M, Assunçao RM. (2007) A space time permutation scan statistic with irregular shape for disease outbreak detection. Advances in Disease Surveillance. 4: 86.
  • Çelik Ş. (2013) Kümelenme analizi ile sağlık göstergelerine göre Türkiye’deki illerin sınıflandırılması. Doğuş Üniversitesi Dergisi. 14: 175-194.
  • Duffy KJ. (2010) Identifying sighting clusters of endangered taxa with historical records. Conservation Biology. 25: 392-399.
  • Elliott P, Wartenberg D. (2004) Spatial epidemiology: Current approaches and future challenges. Environmental Health Perspectives. 112: 998-1006.
  • Gomez-Barroso D, Valin ER, Ramis R, Cano R. (2013) Spatio-temporal analysis of tuberculosis in Spain, 2008-2010. The International Journal of Tuberculosis and Lung Disease. 17:745-751.
  • Gurjav U, Jelfs P, Cawthorne GAH, Marais BJ, Sintchenko V. (2015) Genotype heterogeneity of Mycobacterium tuberculosis within geospatial hot-spots suggests foci of imported infection in Sydney, Australia. Infection, Genetics and Evolution. 40: 346-351.
  • Hassarangsee S, Tripathi NK, Souris M. (2015) Spatial pattern detection of tuberculosis: A case study of Si Sa Ket Province, Thailand. International Journal of Environmental Research and Public Health. 12: 16005-16018.
  • Houlihan CF, Mutevedzi PC, Lessells RJ, Cooke GS, Tanser FC, Newell ML. (2010) The tuberculosis challenge in a rural South African HIV programme. BMC Infectious Diseases. 10: 23.
  • Jones SG, Kulldorff M. (2012) Influence of spatial resolution on space-time disease cluster detection. PLoS One [Electronic Journal] 7: e48036. Erişim Adresi: [https://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0048036].
  • Kamenetsky ME, Lee J, Zhu J, Gangon RE. (2021) Regularized spatial and spatio-temporal cluster detection. Spatial and Statio-temporal Epidemiology. Basımda.
  • Karabulut E, Alpar R, Özayar E. (2006) Hastalıkların yere göre kümelenmesinde kullanılan yöntemler. İnönü Üniversitesi Tıp Fakültesi Dergisi. 13: 37-43.
  • Kim Y, O’Kelly M. (2008) A bootstrap based space-time surveillance model with an application to crime occurences. Journal of Geographical Systems. 10: 141-165.
  • Kulldorff M. (2021) SaTScan User Guide for version 10.0. Erişim Adresi: [https://www.satscan.org/cgi-bin/satscan/register.pl/SaTScan_Users_Guide.pdf?todo=process_userguide_download]. Erişim Tarihi: 01/01/2021.
  • Kulldorff M, Nagarwalla N. (1995) Spatial disease clusters: Detection and inference. Statistics in Medicine. 14: 799-810.
  • Kulldorff M, Athas WF, Feuer EJ, Key CR. (1998) Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos, New Mexico. Public Health Brief. 88: 1377-1380.
  • Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F. (2005) A space-time permutation scan statistic for disease outbreak detection. Plos Medicine [Electronic Journal]. 2: e59. Erişim Adresi: [https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020059].
  • Kulldorff M, Huang L, Pickle L, Duczmal L. (2006) An elliptic spatial scan statistic. Statistics in Medicine. 25: 3929-3943.
  • Lian M, Warner RD, Alexander JL, Dixon KR. (2007) Using geographic information systems and spatial and space-time scan statistics for a population-based risk analysis of the 2002 equine West Nile epidemic in six contiguous regions of Texas. International Journal of Health Geographics. 6: 42.
  • Mala S, Sengupta R. (2013) Geo-visual approach for spatial scan statistics: An analysis of dengue fever outbreaks in Delhi. International Journal of Advanced Computer Science and Applications. 4:127-137.
  • Mathes RW, Lall R, Levin-rector A, Sell J, Paladini M, Konty KJ, Olson D, Weiss D. (2017) Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system. PLoS One [Electronic Journal]. 12: e0184419. Erişim Adresi: [https://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0184419].
  • Melnick AL. (2002) Introduction. In: Introduction to Geographic Information Systems in Public Health, 5th Ed., Aspen Publishers Inc, p.: 1-8.
  • Moore DA, Carpenter TE. (1999) Spatial analytical methods and geographic information systems: Use in health research and epidemiology. Epidemiologic Reviews. 21: 143-161.
  • Nunes C. (2007) Tuberculosis incidence in Portugal: Spatiotemporal clustering. International Journal of Health Geographics. 6: 30.
  • Olsen SF, Martuzzi M, Elliott P. (1996) Cluster analysis and disease mapping-why, when, and how? A step by step guide. British Medical Journal. 313: 863-866.
  • Onozuka D, Hagihara A. (2007) Geographic prediction of tuberculosis clusters in Fukuoka, Japan, using the space-time scan statistic. BMC Infectious Diseases. 7: 26.

  • Ostfeld RS, Glass GE, Keesing F. (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecology and Evolution. 20: 328-336.
  • Paireau J, Girind F, Collard JM, Mainassara HB, Jusot JF. (2012) Analysing spatio-temporal clustering of meningococcal meningitis outbreaks in Niger reveals opportunities for improved disease control. PLoS Neglected Tropical Disease [Electronic Journal]. 6: e1577. Erişim Adresi: [https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001577].
  • Pfeiffer DU, Hugh Jones M. (2002) Geographical information systems as a tool in epidemiological assessment and wildlife disease management. Scientific and Technical Review of the Office International des Epizooties. 21: 91-102.
  • Prates MO, Kulldorff M, Assuncao RM. (2014) Relative risk estimates from saptial and space-time scan statistics: Are they biased?. Statistics in Medicine. 33: 2634-2644.
  • Rao H, Shi X, Zhang X. (2017) Using the Kulldorff’s scan statistical analysis to detect spatio-temporal clusters of tuberculosis in Qinghai Province, China, 2009-2016. BMC Infectious Diseases. 17: 578.
  • Seng B, Chong AK, Moore A. (2005) Geostatistical modelling, analysis and mapping of epidemiology of dengue fever in Johor State, Malaysia. 17th Annual Colloquium of the Spatial Information Research Centre (SIRC 2005: A Spatio-temporal Workshop), Dunedin, New Zealand.
  • Sinharay S. (2010) An overview of statistics in education. In: International Encyclopedia of Education. Ed.: Peterson P., Baker E., McGaw B., 3rd Ed., Elsevier Inc. p.: 1-11.
  • Suzuki K, Pereira JAC, Lo Pez R, Morales G, Rojas L, Mutinelli LE, Pons ER. (2007) Descriptive spatial and spatio-temporal analysis of the 2000-2005 canine rabies endemic
in Santa Cruz de la Sierra, Bolivia. Acta Tropica. 103: 157-162.
  • Tonini M, Tuia D, Ratle F. (2009) Detection of clusters using space–time scan statistics. International Journal of Wildland Fire. 18: 830-836.
  • Walford NS. (2020) Demographic and social context of deaths during the 1854 cholera outbreak in Soho, London: a reappraisal of Dr John Snow’s investigation. Health and Place, 65: 102402.
  • Ward MP, Farnsworth ML. (2009) An evaluation of the space-time permutation test for detecting disease clusters. International Symposia on Veterinary Epidemiology and Economics Proceedings, ISVEE 12, Durban-South Africa, p.: 75.
  • Wieczorek WF, Hanson CE. (1997) Geographic information systems and spatial analysis. Alcohol Health & Research World. 21: 331-340.

An overview of cluster analysis

Year 2022, Volume: 33 Issue: 2, 79 - 84, 23.12.2022
https://doi.org/10.35864/evmd.1056351

Abstract

Identification of the characteristics that are effective in the emergence of diseases that affect public health contributes to a better understanding and control of diseases. The space where an event occurred can provide some indication of why that event occurred. There are specific statistical tests to analyze the space and time of diseases. For the last 20 years, space and space-time screening statistics have been widely used for the identification and evaluation of disease clusters and disease surveillance. Space and space-time analysis examine the causes and consequences of spatial and temporal variation in disease risk or incidence in infectious diseases, particularly zoonoses. In this review, information about the Space-Time Permutation Model and the SaTScan software, which is a spatial scanning statistic that is widely used in the detection of disease clusters with more cases than expected in space and/or time, has been brought together.

References

  • Abrams AM, Kulldorff M, Kleinman K. (2006) Empirical/asymptomatic p-vlues for monte carlo-based hypothesis testing: an application to cluster detection using the scan statistic. Advances in Disease Surveillance. 1: 1.
  • Alton GD, Pearl DL, Bateman KG, Mcnab B, Berke O. (2013) Comparison of covariate adjustment methods using space-time scan statistics for food animal syndromic surveillance. BMC Veterinary Research. 9: 231.
  • Block R. (2007) Scanning for clusters in space and time, A tutorial review of SaTScan. Social Science Computer Review. 25: 272-278.
  • Carpenter TE. (2011) The spatial epidemiologic (r)evolution: A look back in time and forward to the future. Spatial and Spatio-temporal Epidemiology. 2: 119-124.
  • Cheng T, Adepeju M. (2013) Detecting emerging space-time crime patterns by prospective STSS. Erişim Adresi: [https://pdfs.semanticscholar.org/3304/bd580504688ec06265c1f4cdc7b94c9c475d.pdf?_ga= 1309437.717547166.1563568558-1765960572.1561041528]. Erişim Tarihi: 01/01/2021.
  • Costa MA, Kulldorff M, Assunçao RM. (2007) A space time permutation scan statistic with irregular shape for disease outbreak detection. Advances in Disease Surveillance. 4: 86.
  • Çelik Ş. (2013) Kümelenme analizi ile sağlık göstergelerine göre Türkiye’deki illerin sınıflandırılması. Doğuş Üniversitesi Dergisi. 14: 175-194.
  • Duffy KJ. (2010) Identifying sighting clusters of endangered taxa with historical records. Conservation Biology. 25: 392-399.
  • Elliott P, Wartenberg D. (2004) Spatial epidemiology: Current approaches and future challenges. Environmental Health Perspectives. 112: 998-1006.
  • Gomez-Barroso D, Valin ER, Ramis R, Cano R. (2013) Spatio-temporal analysis of tuberculosis in Spain, 2008-2010. The International Journal of Tuberculosis and Lung Disease. 17:745-751.
  • Gurjav U, Jelfs P, Cawthorne GAH, Marais BJ, Sintchenko V. (2015) Genotype heterogeneity of Mycobacterium tuberculosis within geospatial hot-spots suggests foci of imported infection in Sydney, Australia. Infection, Genetics and Evolution. 40: 346-351.
  • Hassarangsee S, Tripathi NK, Souris M. (2015) Spatial pattern detection of tuberculosis: A case study of Si Sa Ket Province, Thailand. International Journal of Environmental Research and Public Health. 12: 16005-16018.
  • Houlihan CF, Mutevedzi PC, Lessells RJ, Cooke GS, Tanser FC, Newell ML. (2010) The tuberculosis challenge in a rural South African HIV programme. BMC Infectious Diseases. 10: 23.
  • Jones SG, Kulldorff M. (2012) Influence of spatial resolution on space-time disease cluster detection. PLoS One [Electronic Journal] 7: e48036. Erişim Adresi: [https://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0048036].
  • Kamenetsky ME, Lee J, Zhu J, Gangon RE. (2021) Regularized spatial and spatio-temporal cluster detection. Spatial and Statio-temporal Epidemiology. Basımda.
  • Karabulut E, Alpar R, Özayar E. (2006) Hastalıkların yere göre kümelenmesinde kullanılan yöntemler. İnönü Üniversitesi Tıp Fakültesi Dergisi. 13: 37-43.
  • Kim Y, O’Kelly M. (2008) A bootstrap based space-time surveillance model with an application to crime occurences. Journal of Geographical Systems. 10: 141-165.
  • Kulldorff M. (2021) SaTScan User Guide for version 10.0. Erişim Adresi: [https://www.satscan.org/cgi-bin/satscan/register.pl/SaTScan_Users_Guide.pdf?todo=process_userguide_download]. Erişim Tarihi: 01/01/2021.
  • Kulldorff M, Nagarwalla N. (1995) Spatial disease clusters: Detection and inference. Statistics in Medicine. 14: 799-810.
  • Kulldorff M, Athas WF, Feuer EJ, Key CR. (1998) Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos, New Mexico. Public Health Brief. 88: 1377-1380.
  • Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F. (2005) A space-time permutation scan statistic for disease outbreak detection. Plos Medicine [Electronic Journal]. 2: e59. Erişim Adresi: [https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020059].
  • Kulldorff M, Huang L, Pickle L, Duczmal L. (2006) An elliptic spatial scan statistic. Statistics in Medicine. 25: 3929-3943.
  • Lian M, Warner RD, Alexander JL, Dixon KR. (2007) Using geographic information systems and spatial and space-time scan statistics for a population-based risk analysis of the 2002 equine West Nile epidemic in six contiguous regions of Texas. International Journal of Health Geographics. 6: 42.
  • Mala S, Sengupta R. (2013) Geo-visual approach for spatial scan statistics: An analysis of dengue fever outbreaks in Delhi. International Journal of Advanced Computer Science and Applications. 4:127-137.
  • Mathes RW, Lall R, Levin-rector A, Sell J, Paladini M, Konty KJ, Olson D, Weiss D. (2017) Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system. PLoS One [Electronic Journal]. 12: e0184419. Erişim Adresi: [https://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0184419].
  • Melnick AL. (2002) Introduction. In: Introduction to Geographic Information Systems in Public Health, 5th Ed., Aspen Publishers Inc, p.: 1-8.
  • Moore DA, Carpenter TE. (1999) Spatial analytical methods and geographic information systems: Use in health research and epidemiology. Epidemiologic Reviews. 21: 143-161.
  • Nunes C. (2007) Tuberculosis incidence in Portugal: Spatiotemporal clustering. International Journal of Health Geographics. 6: 30.
  • Olsen SF, Martuzzi M, Elliott P. (1996) Cluster analysis and disease mapping-why, when, and how? A step by step guide. British Medical Journal. 313: 863-866.
  • Onozuka D, Hagihara A. (2007) Geographic prediction of tuberculosis clusters in Fukuoka, Japan, using the space-time scan statistic. BMC Infectious Diseases. 7: 26.

  • Ostfeld RS, Glass GE, Keesing F. (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecology and Evolution. 20: 328-336.
  • Paireau J, Girind F, Collard JM, Mainassara HB, Jusot JF. (2012) Analysing spatio-temporal clustering of meningococcal meningitis outbreaks in Niger reveals opportunities for improved disease control. PLoS Neglected Tropical Disease [Electronic Journal]. 6: e1577. Erişim Adresi: [https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001577].
  • Pfeiffer DU, Hugh Jones M. (2002) Geographical information systems as a tool in epidemiological assessment and wildlife disease management. Scientific and Technical Review of the Office International des Epizooties. 21: 91-102.
  • Prates MO, Kulldorff M, Assuncao RM. (2014) Relative risk estimates from saptial and space-time scan statistics: Are they biased?. Statistics in Medicine. 33: 2634-2644.
  • Rao H, Shi X, Zhang X. (2017) Using the Kulldorff’s scan statistical analysis to detect spatio-temporal clusters of tuberculosis in Qinghai Province, China, 2009-2016. BMC Infectious Diseases. 17: 578.
  • Seng B, Chong AK, Moore A. (2005) Geostatistical modelling, analysis and mapping of epidemiology of dengue fever in Johor State, Malaysia. 17th Annual Colloquium of the Spatial Information Research Centre (SIRC 2005: A Spatio-temporal Workshop), Dunedin, New Zealand.
  • Sinharay S. (2010) An overview of statistics in education. In: International Encyclopedia of Education. Ed.: Peterson P., Baker E., McGaw B., 3rd Ed., Elsevier Inc. p.: 1-11.
  • Suzuki K, Pereira JAC, Lo Pez R, Morales G, Rojas L, Mutinelli LE, Pons ER. (2007) Descriptive spatial and spatio-temporal analysis of the 2000-2005 canine rabies endemic
in Santa Cruz de la Sierra, Bolivia. Acta Tropica. 103: 157-162.
  • Tonini M, Tuia D, Ratle F. (2009) Detection of clusters using space–time scan statistics. International Journal of Wildland Fire. 18: 830-836.
  • Walford NS. (2020) Demographic and social context of deaths during the 1854 cholera outbreak in Soho, London: a reappraisal of Dr John Snow’s investigation. Health and Place, 65: 102402.
  • Ward MP, Farnsworth ML. (2009) An evaluation of the space-time permutation test for detecting disease clusters. International Symposia on Veterinary Epidemiology and Economics Proceedings, ISVEE 12, Durban-South Africa, p.: 75.
  • Wieczorek WF, Hanson CE. (1997) Geographic information systems and spatial analysis. Alcohol Health & Research World. 21: 331-340.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Review
Authors

İpek Keskin 0000-0002-4639-7897

Publication Date December 23, 2022
Submission Date January 11, 2022
Published in Issue Year 2022 Volume: 33 Issue: 2

Cite

APA Keskin, İ. (2022). Kümelenme analizine genel bir bakış. Etlik Veteriner Mikrobiyoloji Dergisi, 33(2), 79-84. https://doi.org/10.35864/evmd.1056351

download