Review
BibTex RIS Cite

More Comprehension on Bacterial Biodosimeters

Year 2024, Volume: 35 Issue: 1, 99 - 104, 04.07.2024
https://doi.org/10.35864/evmd.1380917

Abstract

The topic of bacterial biodosimetry, which is a type of biodosimetry, that uses bacteria as a challenge organism to measure the fluence of a reactor by determining its ability to inactivate them is emerging. These biodosimeters capitalize on the unique responses of bacterial systems to ionizing radiation, providing valuable insights into the biological effects of radiation, and enabling accurate dose estimation, and the potential health risks for living organisms. This review covers the details of the advantages and disadvantages of using bacteria for area monitoring of radiation and the current state of knowledge regarding bacterial biodosimeters. Additionally, we discuss detection methodologies for bacteria, irradiation protocols, and the factors that can affect the culture conditions. This review aims to consolidate the existing knowledge on bacterial biodosimeters and stimulate further research to harness their full potential in radiation monitoring and protection.

References

  • Albander, H. (2021). Occupational health and radiation Safety of radiography workers. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.95061
  • Boice, J. D., Dauer, L. T., Kase, K. R., Mettler, F. A., & Vetter, R. J. (2020). Evolution of radiation protection for medical workers. British Journal of Radiology, 93(1112), 20200282. https://doi.org/10.1259/bjr.20200282
  • De Deene, Y. (2022). Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D. Gels, 8(9), 599. https://doi.org/10.3390/gels8090599
  • Farci, D., Haniewicz, P., & Piano, D. (2022). The structured organization of Deinococcus radiodurans ’ cell envelope. Proceedings of the National Academy of Sciences of the United States of America, 119(45). https://doi.org/10.1073/pnas.2209111119
  • Ghosal, D., Omelchenko, M. V., Gaidamakova, E. K., Matrosova, V. Y., Василенко, А. Т., Venkateswaran, A., Zhai, M., Kostandarithes, H. M., Brim, H., Makarova, K. S., Wackett, L. P., Fredrickson, J. K., & Daly, M. J. (2005). How radiation kills cells: Survival ofDeinococcus radioduransandShewanella oneidensisunder oxidative stress. Fems Microbiology Reviews, 29(2), 361–375. https://doi.org/10.1016/j.fmrre.2004.12.007
  • Heron, J. L., Padovani, R., Smith, I., & Czarwinski, R. (2010). Radiation protection of medical staff. European Journal of Radiology, 76(1), 20–23. https://doi.org/10.1016/j.ejrad.2010.06.034
  • International Conference on Occupational Radiation Protection – Strengthening Radiation Protection of Workers – Twenty years of progress and the Way forward. (n.d.). https://www.iaea.org/events/occupational-radiation-protection-2022
  • Liu, F., Li, N., & Zhang, Y. (2023). The radioresistant and survival mechanisms of Deinococcus radiodurans. Radiation Medicine and Protection, 4(2), 70–79. https://doi.org/10.1016/j.radmp.2023.03.001
  • Macchione, M. A., Páez, S. L., Strumia, M. C., Valente, M., & Mattea, F. (2022). Chemical Overview of gel Dosimetry Systems: A Comprehensive Review. Gels, 8(10), 663. https://doi.org/10.3390/gels8100663
  • Nocker, A., Shah, M. S., Dannenmann, B., Schulze‐Osthoff, K., Wingender, J., & Probst, A. J. (2018). Assessment of UV-C-induced water disinfection by differential PCR-based quantification of bacterial DNA damage. Journal of Microbiological Methods, 149, 89–95. https://doi.org/10.1016/j.mimet.2018.03.007
  • Radiation Biodosimetry Medical Countermeasure Devices Guidance for Industry and Food and Drug Administration Staff. (2016, April). U.S. Food And Drug Administration. https://www.fda.gov/regulatory-
  • information/search-fda-guidance-documents/radiation-biodosimetry-medical-countermeasure-devices Sholom, S., McKeever, S., Escalona, M., Ryan, T. L., & Balajee, A. S. (2022). A comparative validation of biodosimetry and physical dosimetry techniques for possible triage applications in emergency dosimetry. Journal of Radiological Protection, 42(2), 021515. https://doi.org/10.1088/1361-6498/ac5815
  • Sperle, P., Khan, M. S., Drewes, J. E., & Wurzbacher, C. (2023). A practical bacterial biodosimetry procedure to assess performance of Lab-Scale flow-through ultraviolet water disinfection reactors. ACS ES&T Water, 3(8), 2130–2139. https://doi.org/10.1021/acsestwater.2c00648
  • Sproull, M., Camphausen, K., & Koblentz, G. D. (2017). Biodosimetry: a future tool for medical management of radiological emergencies. Health Security, 15(6), 599–610. https://doi.org/10.1089/hs.2017.0050
  • Suárez, R. C., Gustafsson, M., & Mrabit, K. (2001). IAEA Occupational Radiation Protection Programme. Radiation Protection Dosimetry, 96(1), 17–20. https://doi.org/10.1093/oxfordjournals.rpd.a006575
  • Swartz, H. M., Flood, A. B., & Williams, B. B. (2014). Overview of the principles and practice of biodosimetry. Radiation and Environmental Biophysics, 53(2), 221–232. https://doi.org/10.1007/s00411-014-0522-0
  • Wang, Y., & Salazar, J. K. (2015). Culture-Independent rapid detection methods for bacterial pathogens and toxins in food matrices. Comprehensive Reviews in Food Science and Food Safety, 15(1), 183–205. https://doi.org/10.1111/1541-4337.12175
  • Wilkins, R., Rodrigues, M. A., & Beaton-Green, L. A. (2017). The application of Imaging Flow Cytometry to High-Throughput Biodosimetry. Genome Integrity, 8. https://doi.org/10.4103/2041-9414.198912
  • Wise, K. (2006). Preparing Spread Plates Protocols. Am. Soc. Microbiol. Microbe Libr. https://www.asmscience.org/content/education/protocol/protocol.3085
  • Workers. (n.d.). https://www.iaea.org/topics/radiation-protection/workers. [Accessed:Sep. 30, 2023]. Workplace Monitoring - home. (n.d.).
  • https://nucleus.iaea.org/sites/orpnet/training/workplacemonitoring/SitePages/Home.aspx Yukihara, E., McKeever, S., Andersen, C., Bos, A., Bailiff, I., Yoshimura, E. M., Sawakuchi, G. O., Bossin, L., &
  • Christensen, J. B. (2022). Luminescence dosimetry. Nature Reviews Methods Primers, 2(1). https://doi.org/10.1038/s43586-022-00102-0
  • Zhang, X., Jiang, X., Yang, Q., Wang, X., Zhang, Y., Zhao, J., Qu, K., & Zhao, C. (2018). Online Monitoring of Bacterial
  • Growth with an Electrical Sensor. Analytical Chemistry, 90(10), 6006–6011. https://doi.org/10.1021/acs.analchem.8b01214

Bakteriyel Biyodozimetreleri Daha İyi Anlama

Year 2024, Volume: 35 Issue: 1, 99 - 104, 04.07.2024
https://doi.org/10.35864/evmd.1380917

Abstract

Bakteriyel biyodozimetre konusu, reaktörün etkin dozunu ölçmek için bakterileri meydan okuma organizması olarak kullanan bir tür biyodozimetre olan bakteriyel biyodozimetrenin ortaya çıkışıyla gündeme gelmektedir. Bu biyodozimetreler, bakteri sistemlerinin iyonlaştırıcı radyasyona karşı benzersiz tepkilerinden faydalanarak, radyasyonun biyolojik etkileri hakkında değerli bilgiler sunmakta ve doğru doz tahminini sağlamaktadır, aynı zamanda canlı organizmalar için potansiyel sağlık risklerini belirlemektedir. Bu derleme, radyasyonun alan izlemesi için bakterilerin kullanılmasının avantajları ve dezavantajlarının detaylarını ve bakteriyel biyodozimetreler hakkındaki mevcut bilgi durumunu kapsamaktadır. Ayrıca, bakterilerin tespit yöntemlerini, radyasyon maruziyeti protokollerini ve kültür koşullarını etkileyebilecek faktörleri tartışmaktayız. Bu derleme, bakteriyel biyodozimetrelerin var olan bilgisini bir araya getirme ve radyasyon izleme ve koruma konularında potansiyellerini tam olarak kullanmak için daha fazla araştırmayı teşvik etmeyi amaçlamaktadır.

References

  • Albander, H. (2021). Occupational health and radiation Safety of radiography workers. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.95061
  • Boice, J. D., Dauer, L. T., Kase, K. R., Mettler, F. A., & Vetter, R. J. (2020). Evolution of radiation protection for medical workers. British Journal of Radiology, 93(1112), 20200282. https://doi.org/10.1259/bjr.20200282
  • De Deene, Y. (2022). Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D. Gels, 8(9), 599. https://doi.org/10.3390/gels8090599
  • Farci, D., Haniewicz, P., & Piano, D. (2022). The structured organization of Deinococcus radiodurans ’ cell envelope. Proceedings of the National Academy of Sciences of the United States of America, 119(45). https://doi.org/10.1073/pnas.2209111119
  • Ghosal, D., Omelchenko, M. V., Gaidamakova, E. K., Matrosova, V. Y., Василенко, А. Т., Venkateswaran, A., Zhai, M., Kostandarithes, H. M., Brim, H., Makarova, K. S., Wackett, L. P., Fredrickson, J. K., & Daly, M. J. (2005). How radiation kills cells: Survival ofDeinococcus radioduransandShewanella oneidensisunder oxidative stress. Fems Microbiology Reviews, 29(2), 361–375. https://doi.org/10.1016/j.fmrre.2004.12.007
  • Heron, J. L., Padovani, R., Smith, I., & Czarwinski, R. (2010). Radiation protection of medical staff. European Journal of Radiology, 76(1), 20–23. https://doi.org/10.1016/j.ejrad.2010.06.034
  • International Conference on Occupational Radiation Protection – Strengthening Radiation Protection of Workers – Twenty years of progress and the Way forward. (n.d.). https://www.iaea.org/events/occupational-radiation-protection-2022
  • Liu, F., Li, N., & Zhang, Y. (2023). The radioresistant and survival mechanisms of Deinococcus radiodurans. Radiation Medicine and Protection, 4(2), 70–79. https://doi.org/10.1016/j.radmp.2023.03.001
  • Macchione, M. A., Páez, S. L., Strumia, M. C., Valente, M., & Mattea, F. (2022). Chemical Overview of gel Dosimetry Systems: A Comprehensive Review. Gels, 8(10), 663. https://doi.org/10.3390/gels8100663
  • Nocker, A., Shah, M. S., Dannenmann, B., Schulze‐Osthoff, K., Wingender, J., & Probst, A. J. (2018). Assessment of UV-C-induced water disinfection by differential PCR-based quantification of bacterial DNA damage. Journal of Microbiological Methods, 149, 89–95. https://doi.org/10.1016/j.mimet.2018.03.007
  • Radiation Biodosimetry Medical Countermeasure Devices Guidance for Industry and Food and Drug Administration Staff. (2016, April). U.S. Food And Drug Administration. https://www.fda.gov/regulatory-
  • information/search-fda-guidance-documents/radiation-biodosimetry-medical-countermeasure-devices Sholom, S., McKeever, S., Escalona, M., Ryan, T. L., & Balajee, A. S. (2022). A comparative validation of biodosimetry and physical dosimetry techniques for possible triage applications in emergency dosimetry. Journal of Radiological Protection, 42(2), 021515. https://doi.org/10.1088/1361-6498/ac5815
  • Sperle, P., Khan, M. S., Drewes, J. E., & Wurzbacher, C. (2023). A practical bacterial biodosimetry procedure to assess performance of Lab-Scale flow-through ultraviolet water disinfection reactors. ACS ES&T Water, 3(8), 2130–2139. https://doi.org/10.1021/acsestwater.2c00648
  • Sproull, M., Camphausen, K., & Koblentz, G. D. (2017). Biodosimetry: a future tool for medical management of radiological emergencies. Health Security, 15(6), 599–610. https://doi.org/10.1089/hs.2017.0050
  • Suárez, R. C., Gustafsson, M., & Mrabit, K. (2001). IAEA Occupational Radiation Protection Programme. Radiation Protection Dosimetry, 96(1), 17–20. https://doi.org/10.1093/oxfordjournals.rpd.a006575
  • Swartz, H. M., Flood, A. B., & Williams, B. B. (2014). Overview of the principles and practice of biodosimetry. Radiation and Environmental Biophysics, 53(2), 221–232. https://doi.org/10.1007/s00411-014-0522-0
  • Wang, Y., & Salazar, J. K. (2015). Culture-Independent rapid detection methods for bacterial pathogens and toxins in food matrices. Comprehensive Reviews in Food Science and Food Safety, 15(1), 183–205. https://doi.org/10.1111/1541-4337.12175
  • Wilkins, R., Rodrigues, M. A., & Beaton-Green, L. A. (2017). The application of Imaging Flow Cytometry to High-Throughput Biodosimetry. Genome Integrity, 8. https://doi.org/10.4103/2041-9414.198912
  • Wise, K. (2006). Preparing Spread Plates Protocols. Am. Soc. Microbiol. Microbe Libr. https://www.asmscience.org/content/education/protocol/protocol.3085
  • Workers. (n.d.). https://www.iaea.org/topics/radiation-protection/workers. [Accessed:Sep. 30, 2023]. Workplace Monitoring - home. (n.d.).
  • https://nucleus.iaea.org/sites/orpnet/training/workplacemonitoring/SitePages/Home.aspx Yukihara, E., McKeever, S., Andersen, C., Bos, A., Bailiff, I., Yoshimura, E. M., Sawakuchi, G. O., Bossin, L., &
  • Christensen, J. B. (2022). Luminescence dosimetry. Nature Reviews Methods Primers, 2(1). https://doi.org/10.1038/s43586-022-00102-0
  • Zhang, X., Jiang, X., Yang, Q., Wang, X., Zhang, Y., Zhao, J., Qu, K., & Zhao, C. (2018). Online Monitoring of Bacterial
  • Growth with an Electrical Sensor. Analytical Chemistry, 90(10), 6006–6011. https://doi.org/10.1021/acs.analchem.8b01214
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Microbiology (Other), Biomedical Engineering (Other)
Journal Section Review
Authors

Muhammet Arslan 0000-0001-5565-0770

Meltem Delimanlar 0000-0003-4152-7805

Ahmet Koluman 0000-0001-5308-8884

Publication Date July 4, 2024
Submission Date October 30, 2023
Acceptance Date March 12, 2024
Published in Issue Year 2024 Volume: 35 Issue: 1

Cite

APA Arslan, M., Delimanlar, M., & Koluman, A. (2024). Bakteriyel Biyodozimetreleri Daha İyi Anlama. Etlik Veteriner Mikrobiyoloji Dergisi, 35(1), 99-104. https://doi.org/10.35864/evmd.1380917

download