Review
BibTex RIS Cite

Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü

Year 2021, Volume: 11 Issue: 1, 57 - 66, 03.05.2021
https://doi.org/10.26650/experimed.2021.831169

Abstract

Nörogenez, nöral kök hücrelerin (NKH) bölünme, göç etme ve fark-lılaşma süreçlerinin bütününü oluşturmaktadır. Lateral ventrikülün subventriküler bölgesi (SVZ) ve hipokampus dentat girus (DG)’daki subgranüler bölge (SGZ) olmak üzere iki farklı nişte gerçekleşmek-tedir. Nörotrofik faktörler, NKH ve nöral progenitor hücrelerin mig-rasyon, proliferasyon ve farklılaşmasında rol oynar. Ayrıca, NKH’le-rin hasarlı dokuda, nöral hücrelerin yeniden yapılanması, nöral plastisite ve anjiogenezi düzenleyici etkileri olduğu gösterilmiştir. Yetişkin nörogenezinde ise nörotrofik faktör kombinasyonlarının serebrovasküler, nörodejeneratif, onkolojik hastalıklar ve travma sonrası oluşan inflamatuvar hasar tedavisinde önemli rolü olduğu bilinmektedir. Bu derlemede, nörotrofik faktörlerin NKH’ler üzerin-deki modüle edici etkisi ve potansiyel terapötik uygulamalarında preklinik ve klinik çalışmaları içeren güncel literatürler biraraya ge-tirilmiştir. Bu alanda çalışma yapan araştırmacı ve hekimlere fayda sağlayacak güncel bilgiler içermektedir.

Supporting Institution

İstanbul Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

THZ-2016-21839

References

  • 1. Fortier, Lisa A. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005; 34(5): 415-23. [CrossRef] google scholar
  • 2. Cheung TH, Rando TA. Molecular regulation of stem cell quiescen-ce. Nat Rev Mol Cell Biol 2013; 14(6) :329-40. [CrossRef] google scholar
  • 3. Dulak J, Szade K, Szade A, Nowak W, Jözkowicz A. Adult stem cel-ls: hopes and hypes of regenerative medicine. Acta Biochim Pol 2015; 62(3): 329-37. [CrossRef] google scholar
  • 4. Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA. The new stem cell biology: something for everyone. Mol Pat-hol 2003; 56(2): 86-96. [CrossRef] google scholar
  • 5. Ralston A, Rossant J. The genetics of induced pluripotency. Reproduction 2010; 139(1): 35-44. [CrossRef] google scholar
  • 6. Bjornsson CS, Apostolopoulou M, Tian Y, Temple S. It takes a villa-ge: constructing the neurogenic niche. Dev Cell 2015; 32(4): 43546. [CrossRef] google scholar
  • 7. Lepousez G, Lledo PM. Life and death decision in adult neuroge-nesis: in praise of napping. Neuron 2011; 71(5): 768-71. [CrossRef] google scholar
  • 8. M.R. Akins, A.D.R. Garcia, Neurogenesis in the Adult Brain. Encyclo-pedia of Cell Biology 2016; 4: 134-40. [CrossRef] google scholar
  • 9. Altman J. Are new neurons formed in the brains of adult mam-mals? Science 1962; 135(3509): 1127-8. [CrossRef] google scholar
  • 10. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124: 319-35. [CrossRef] google scholar
  • 11. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969; 137(4): 433-57. [CrossRef] google scholar
  • 12. Sun W, Kim H, Moon Y. Control of neuronal migration through rostral migration stream in mice. Anatomy & Cell Biology 2010; 43: 269-79. [CrossRef] google scholar
  • 13. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003; 9(4): 439-47. [CrossRef] google scholar
  • 14. Bond AM, Ming GL, Song H. Adult Mammalian Neural Stem Cel-ls and Neurogenesis: Five Decades Later. Cell Stem Cell 2015; 17: 385-95. [CrossRef] google scholar 15. Gage FH. Mammalian neural stem cells. Science 2000; 287(5457): 1433-8. [CrossRef] google scholar
  • 16. Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8(5): a018820. [CrossRef] google scholar
  • 17. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 2006; 26(30): 7907-18. [CrossRef] google scholar
  • 18. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 2002; 16(9): 1681-9. [CrossRef] google scholar
  • 19. Doetsch F, Alvarez-Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A. 1996; 93(25): 14895-900. [CrossRef] google scholar
  • 20. Hatanaka Y, Zhu Y, Torigoe M, Kita Y, Murakami F. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc Jpn Acad Ser B Phys Biol Sci 2016; 92(1): 1-19. [CrossRef] google scholar
  • 21. Bonfanti L, Theodosis DT. Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal la-yer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience 1994; 62(1): 291-305. [CrossRef] google scholar
  • 22. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H. Consequ-ences of neural cell adhesion molecule deficiency on cell mig-ration in the rostral migratory stream of the mouse. J Neurosci 2000;20(4):1446-57. [CrossRef] google scholar
  • 23. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 1994; 264(5162): 1145-8. [CrossRef] google scholar
  • 24. Doetsch F, Garaa-Verdugo JM, Alvarez-Buylla A. Cellular compo-sition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997; 17(13): 5046-61. [CrossRef] google scholar
  • 25. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, et al. Prospective identification and purification of qu-iescent adult neural stem cells from their in vivo niche. Neuron 2014; 82(3): 545-59. [CrossRef] google scholar
  • 26. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A. Direct eviden-ce for homotypic, glia-independent neuronal migration. Neuron 1997; 18(5): 779-91. [CrossRef] google scholar
  • 27. Kheirbek MA. Finding the Roots of Adult Neurogenesis. Cell 2015; 161(7): 1500-2. [CrossRef] google scholar
  • 28. Alvarez-Buylla A, Garaa-Verdugo JM, Mateo AS, Merchant-Larios H. Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J Neurosci 1998; 18(3): 1020-37. [CrossRef] google scholar
  • 29. Garda-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 1998; 36(2): 234-48. [CrossRef] google scholar
  • 30. Gonzalez-Perez O, Alvarez-Buylla A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 2011;67(1-2):147-56. [CrossRef] google scholar
  • 31. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32:149-84. [CrossRef] google scholar
  • 32. Zhang J, Jiao J. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. Biomed Res Int 2015; 2015: 727542. [CrossRef] google scholar
  • 33. Jankovski A, Sotelo C. Subventricular zone-olfactory bulb migra-tory pathway in the adult mouse: cellular composition and speci-ficity as determined by heterochronic and heterotopic transplan-tation. J Comp Neurol 1996; 371(3): 376-96. [CrossRef] google scholar
  • 34. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008; 3(3): 279-88. [CrossRef] google scholar
  • 35. Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 2011; 3(5): a004960. [CrossRef] google scholar
  • 36. O'Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK. Tangential migration of neurons in the developing cerebral cor-tex. Development 1995; 121(7): 2165-76. google scholar
  • 37. Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8(4): 136-57. [CrossRef] google scholar
  • 38. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. Signaling at the gliovascular interface. J Neurosci 2003; 23(27): 9254-62. [CrossRef] google scholar
  • 39. Lalli G. Extracellular signals controlling neuroblast migration in the postnatal brain. Adv Exp Med Biol 2014; 800: 149-80. [CrossRef] google scholar
  • 40. Choe Y, Pleasure SJ, Mira H. Control of Adult Neurogenesis by Short-Range Morphogenic-Signaling Molecules. Cold Spring Harb Perspect Biol 2015; 8(3): a018887. [CrossRef] google scholar
  • 41. Garzon-Muvdi T, Quinones-Hinojosa A. Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J 2009; 51(1): 3-23. [CrossRef] google scholar
  • 42. Cole AE, Murray SS, Xiao J. Bone Morphogenetic Protein 4 Signal-ling in Neural Stem and Progenitor Cells during Development and after Injury. Stem Cells Int 2016; 2016: 9260592. [CrossRef] google scholar
  • 43. Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 2008; 363(1489): 123-37. [CrossRef] google scholar
  • 44. Ihrie RA, Alvarez-Buylla A. Cells in the astroglial lineage are neural stem cells. Cell Tissue Res 2008; 331(1): 179-91. [CrossRef] google scholar
  • 45. Seri B, Garaa-Verdugo JM, Collado-Morente L, McEwen BS, Alva-rez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 2004; 478(4): 35978. [CrossRef] google scholar
  • 46. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002; 415(6875): 1030-4. [CrossRef] google scholar
  • 47. Abbott LC, Nigussie F. Adult neurogenesis in the mammalian den-tate gyrus. Anat Histol Embryol 2020; 49(1): 3-16. [CrossRef] google scholar
  • 48. Laplagne DA, Esposito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, et al. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 2006; 4(12): e409. [CrossRef] google scholar
  • 49. Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modu-lation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits 2017; 11: 74. [CrossRef] google scholar
  • 50. Kazanis I. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expec-tations in the era of regenerative biology. Neuroscientist 2012; 18(1): 15-27. [CrossRef] google scholar
  • 51. Rusznak Z, Henskens W, Schofield E, Kim WS, Fu Y. Adult Neuroge-nesis and Gliogenesis: Possible Mechanisms for Neurorestoration. Exp Neurobiol 2016; 25(3): 103-12. [CrossRef] google scholar
  • 52. Lu QR, Cai L, Rowitch D, Cepko CL, Stiles CD. Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuro-nal survival in developing mouse cortex. Nat Neurosci 2001; 4(10): 973-4. [CrossRef] google scholar
  • 53. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dyna-mic microenvironment for stem cell niche. Biochim Biophys Acta 2014; 1840(8): 2506-19. [CrossRef] google scholar
  • 54. Falcao AM, Marques F, Novais A, Sousa N, Palha JA, Sousa JC. The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci 2012; 6: 34. [CrossRef] google scholar
  • 55. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 2005; 5(4): 401-6. [CrossRef] google scholar
  • 56. Wittko IM, Schanzer A, Kuzmichev A, Schneider FT, Shibuya M, Raab S, et al. VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stre-am in vivo. J Neurosci 2009; 29(27): 8704-14. [CrossRef] google scholar
  • 57. Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis 2010; 6(2): 107-14. [CrossRef] google scholar
  • 58. Kermani P, Hempstead B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 2007; 17(4): 140-3. [CrossRef] google scholar
  • 59. Delgado AC, Ferron SR, Vicente D, Porlan E, Perez-Villalba A, Trujillo CM, et al. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 2014; 83(3): 572-85. [CrossRef] google scholar
  • 60. Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med 2009; 4(6): 879-97. [CrossRef] google scholar
  • 61. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endot-helial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 2002; 99(18): 11946-50. [CrossRef] google scholar
  • 62. Funa K, Sasahara M. The roles of PDGF in development and du-ring neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2014; 9(2): 168-81. [CrossRef] google scholar
  • 63. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hino-josa A, VandenBerg S, et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 2006; 51(2): 187-99. [CrossRef] google scholar
  • 64. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 1999; 13(6): 450-64. [CrossRef] google scholar
  • 65. Marie C, Pedard M, Quirie A, Tessier A, Garnier P, Totoson P, et al. Brain-derived neurotrophic factor secreted by the cerebral endot-helium: A new actor of brain function? J Cereb Blood Flow Metab. 2018; 38(6): 935-49. [CrossRef] google scholar
  • 66. Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 2009; 25: 253-75. [CrossRef] google scholar
  • 67. Zhang H, Fang X, Huang D, Luo Q, Zheng M, Wang K, et al. Erythro-poietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol Med Rep 2018; 17(1): 264-72. [CrossRef] google scholar
  • 68. Benito M, Valverde AM, Lorenzo M. IGF-I: a mitogen also involved in differentiation processes in mammalian cells. Int J Biochem Cell Biol 1996; 28(5): 499-510. [CrossRef] google scholar
  • 69. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyeli-nation, and loss of hippocampal granule and striatal parvalbu-min-containing neurons. Neuron 1995; 14(4): 717-30. [CrossRef] google scholar
  • 70. Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, et al. Autoc-rine production of IGF-I increases stem cell-mediated neuroprote-ction. Stem Cells 2015; 33(5): 1480-9. [CrossRef] google scholar
  • 71. Carlson SW, Madathil SK, Sama DM, Gao X, Chen J, Saatman KE. Conditional overexpression of insulin-like growth factor-1 enhan-ces hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol 2014; 73(8): 734-46. [CrossRef] google scholar
  • 72. Liu J, Speder P, Brand AH. Control of brain development and ho-meostasis by local and systemic insulin signalling. Diabetes Obes Metab 2014; 16(Suppl 1): 16-20. [CrossRef] google scholar
  • 73. de Pablo F, de la Rosa EJ. The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 1995; 18(3): 143-50. [CrossRef] google scholar
  • 74. Supeno NE, Pati S, Hadi RA, Ghani AR, Mustafa Z, Abdullah JM, et al. IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci 2013; 10(5): 522-31. [CrossRef] google scholar
  • 75. Erickson RI, Paucar AA, Jackson RL, Visnyei K, Kornblum H. Roles of insulin and transferrin in neural progenitor survival and prolifera-tion. J Neurosci Res 2008; 86(8): 1884-94. [CrossRef] google scholar
  • 76. Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expres-sion and Function of the Epidermal Growth Factor Receptor in Phy-siology and Disease. Physiol Rev 2016; 96(3): 1025-69. [CrossRef] google scholar
  • 77. Galvez-Contreras AY, Gonzalez-Castaneda RE, Luquin S, Gonza-lez-Perez O. Role of fibroblast growth factor receptors in astrocytic stem cells. Curr Signal Transduct Ther 2012; 7(1): 81-6. [CrossRef] google scholar
  • 78. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 2010; 7(2): 16373. [CrossRef] google scholar
  • 79 Türeyen K, Vemuganti R, Bowen KK, Sailor KA, Dempsey RJ EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain Neurosurgery 2005; 57(6): 1254-63; discussion 1254-63 [CrossRef] google scholar
  • 80 Woodbury ME, Ikezu T Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration J Neuroimmune Pharma-col 2014; 9(2): 92-101 [CrossRef] google scholar
  • 81 Iwata T, Hevner RF Fibroblast growth factor signaling in develop-ment of the cerebral cortex Dev Growth Differ 2009; 51(3): 299323 [CrossRef] google scholar
  • 82 Werner S, Unsicker K, von Bohlen und Halbach O Fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2 J Neurosci Res 2011; 89(10): 1605-17 [CrossRef] google scholar
  • 83 . Newman MP, Feron F, Mackay-Sim A . Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 2000; 99(2): 343-50. [CrossRef] google scholar
  • 84. Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, et al. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2013; 2: e00362. [CrossRef] google scholar
  • 85. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, et al. Mul-tipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neuros-ci 1996; 16(3): 1091-100. [CrossRef] google scholar
  • 86. Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demons-trates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001; 21(18): 7194-202. [CrossRef] google scholar
  • 87. Kim SE, Lee JJ, Song YS. Neurodegenerative diseases. In Clinical PET and PET/CT: Principles and Applications. Springer New York; 2013; p. 151-173. [CrossRef] google scholar
  • 88. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogene-sis and neurodegenerative diseases: A systems biology perspecti-ve. Am J Med Genet B Neuropsychiatr Genet 2017; 174(1): 93-112. [CrossRef] google scholar
  • 89. Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diag-nostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011; 72(2): 126-33. [CrossRef] google scholar
  • 90. Dickson DW. Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258. [CrossRef] google scholar
  • 91. DeTure MA, Dickson DW. The neuropathological diagnosis of Alz-heimer's disease. Mol Neurodegener 2019; 14(1): 32. [CrossRef] google scholar
  • 92. Nopoulos PC. Huntington disease: a single-gene degenerative di-sorder of the striatum. Dialogues Clin Neurosci 2016; 18(1): 91-8. [CrossRef] google scholar
  • 93. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psyc-hiatry 2020; 19(1): 15-33. [CrossRef] google scholar
  • 94. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in sc-hizophrenia: an update for the 21st century. J Psychopharmacol 2015; 29(2): 97-115. [CrossRef] google scholar
  • 95. Weissmiller AM, Wu C. Current advances in using neurotrophic fa-ctors to treat neurodegenerative disorders. Transl Neurodegener 2012; 1(1): 14. [CrossRef] google scholar
  • 96. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 1998; 36(2): 287-306. [CrossRef] google scholar
  • 97. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrop-hic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10: 486. [CrossRef] google scholar
  • 98. Numakawa T, Odaka H, Adachi N. Actions of Brain-Derived Neurot-rophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci 2018; 19(11): 3650. [CrossRef] google scholar
  • 99. Gharami K, Xie Y, An JJ, Tonegawa S, Xu B. Brain-derived neurot-rophic factor over-expression in the forebrain ameliorates Hun-tington's disease phenotypes in mice. J Neurochem 2008; 105(2): 369-79. [CrossRef] google scholar
  • 100. Carradori D, Eyer J, Saulnier P, Preat V, des Rieux A. The therapeutic contribution of nanomedicine to treat neurodegenerative disea-ses via neural stem cell differentiation. Biomaterials 2017; 123: 7791. [CrossRef] google scholar
  • 101. Schindowski K, Belarbi K, Buee L. Neurotrophic factors in Alzhei-mer's disease: role of axonal transport. Genes Brain Behav 2008;7 Suppl 1(1): 43-56. [CrossRef] google scholar
  • 102. Regensburger M, Prots I, Winner B. Adult hippocampal neuroge-nesis in Parkinson's disease: impact on neuronal survival and plas-ticity. Neural Plast 2014; 2014: 454696. [CrossRef] google scholar
  • 103. Tang JJ, Podratz JL, Lange M, Scrable HJ, Jang MH, Windebank AJ. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain. Mol Brain 2017; 10(1): 23. [CrossRef] google scholar
  • 104. Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Car-meliet P. The neurovascular link in health and disease: an update. Trends Mol Med 2009; 15(10): 439-51. [CrossRef] google scholar
  • 105. Lee, Bun-Hee, and Yong-Ku Kim. Increased plasma VEGF levels in major depressive or manic episodes in patients with mood disorders. Journal of Affective Disorders 2012; 136(1/2): 181-4. [CrossRef] google scholar
  • 106. Giuffrida ML, Copani A, Rizzarelli E. A promising connection between BDNF and Alzheimer's disease. Aging (Albany NY). 2018; 10(8): 1791-2. [CrossRef] google scholar
  • 107. Pandini G, Satriano C, Pietropaolo A, Gianl F, Travaglia A, La Men-dola D, et al. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci 2016; 10: 569. [CrossRef] google scholar
  • 108. Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, et al. Targeted delivery of nerve growth factor to the choli-nergic basal forebrain of Alzheimer's disease patients: application of a second-generation encapsulated cell biodelivery device. Alz-heimers Res Ther 2016; 8(1): 30. [CrossRef] google scholar
  • 109. Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzhe-imer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13: 38. [CrossRef] google scholar
  • 110. Suzuki K, Suzuki S, Ishii Y, Fujita H, Matsubara T, Okamura M, et al. Serum insulin-like growth factor-1 levels in neurodegenerative diseases. Acta Neurol Scand 2019; 139(6): 563-7. [CrossRef] google scholar
  • 111. Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, et al. Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv 2018; 25(1): 1560-9. [CrossRef] google scholar
  • 112. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadoms-ki W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21(3): 1170. [CrossRef] google scholar
  • 113. Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, et al. Extended Treatment with Glial Cell Line-Derived Neurotrophic Factor in Parkinson's Disease. J Parkinsons Dis 2019; 9(2): 301-13. [CrossRef] google scholar
  • 114. Huttunen HJ, Saarma M. CDNF Protein Therapy in Parkinson's Di-sease. Cell Transplant 2019; 28(4): 349-66. [CrossRef] google scholar
  • 115. Numao A, Suzuki K, Miyamoto M, Miyamoto T, Hirata K. Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 2014; 20(2): 212-6. [CrossRef] google scholar
  • 116. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington's disease. Prog Neurobiol 2007; 81(5-6): 294-330. [CrossRef] google scholar
  • 117. Martı'nez-Serrano A, Björklund A. Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, geneti-cally modified neural stem cells. J Neurosci 1996; 16(15): 4604-16. [CrossRef] google scholar
  • 118. Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-Derived BDN-F-Overexpressing Neural Progenitors Differentially Promote Reco-very in Huntington's Disease Models by Enhanced Striatal Diffe-rentiation. Stem Cell Reports 2016; 7(4): 693-706. [CrossRef] google scholar
  • 119. Yusuf IO, Cheng PH, Chen HM, Chang YF, Chang CY, Yang HI, et al. Fibroblast Growth Factor 9 Suppresses Striatal Cell Death Domi-nantly Through ERK Signaling in Huntington's Disease. Cell Physi-ol Biochem 2018; 48(2): 605-17. [CrossRef] google scholar
  • 120. Gören JL. Brain-derived neurotrophic factor and schizophrenia. Ment Health Clin 2016; 6(6): 285-8. [CrossRef] google scholar
  • 121. Neugebauer K, Hammans C, Wensing T, Kumar V, Grodd W, Me-vissen L, et al. Nerve Growth Factor Serum Levels Are Associated With Regional Gray Matter Volume Differences in Schizophrenia Patients. Front Psychiatry 2019; 10: 275. [CrossRef] google scholar
  • 122. Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diag-nosis and evaluation of treatment for schizophrenia and depressi-on. Discov Med 2018; 26(143): 127-36. google scholar
  • 123. Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 2010; 7(4): 231-5. [CrossRef] google scholar
  • 124. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healt-hy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [CrossRef] google scholar
  • 125. Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003; 3(2): 90-105, 51. [CrossRef] google scholar
  • 126. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of bra-in-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998; 37(12): 1553-61. [CrossRef] google scholar
  • 127. Poduslo JF, Curran GL. Permeability at the blood-brain and blo-od-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 1996; 36(2): 280-6. [CrossRef] google scholar
  • 128. Fu H, McCarty DM. Crossing the blood-brain-barrier with viral vec-tors. Curr Opin Virol 2016; 21: 87-92. [CrossRef] google scholar
  • 129. Sivandzade F, Cucullo L. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. J Cereb Blood Flow Metab 2018; 38(10): 1667-81. [CrossRef] google scholar
  • 130. Jaeger CB, Winn SR, Tresco PA, Aebischer P. Repair of the blo-od-brain barrier following implantation of polymer capsules. Bra-in Res 1991; 551(1-2): 163-70. [CrossRef] google scholar 131. Ghosh D, Peng X, Leal J, Mohanty R. Peptides as drug delivery ve-hicles across biological barriers. J Pharm Investig 2018; 48(1): 89111. [CrossRef] google scholar
  • 132. Wang Y, Gallagher E, Jorgensen C, Troendle EP, Hu D, Searson PC, et al. An experimentally validated approach to calculate the blo-od-brain barrier permeability of small molecules. Sci Rep 2019; 9(1): 6117. [CrossRef] google scholar
  • 133. Xing H, Hwang K, Lu Y. Recent Developments of Liposomes as Na-nocarriers for Theranostic Applications. Theranostics 2016; 6(9): 1336-52. [CrossRef] google scholar
  • 134. Chen C, Duan Z, Yuan Y, Li R, Pang L, Liang J, et al. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. ACS Appl Mater Interfaces. 2017; 9(7): 5864-73. [CrossRef] google scholar
  • 135. Pardridge WM. Neurotrophins, neuroprotection and the blo-od-brain barrier. Curr Opin Investig Drugs 2002; 3(12): 1753-7. google scholar
  • 136. Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 2017; 11: 325-35. [CrossRef] google scholar

The Role of Growth Factors in Adult Neurogenesis and Neurodegenerative Diseases

Year 2021, Volume: 11 Issue: 1, 57 - 66, 03.05.2021
https://doi.org/10.26650/experimed.2021.831169

Abstract

Neurogenesis is the combined processes of division, migration and differentiation of neural stem cells (NSCs). The two different loca-tions: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) in the hippocampus dentate gyrus (DG), provide a niche environment for neurogenesis. Neurotrophic fac-tors have roles on migration, proliferation and differentiation of NSC and neural progenitor cells. Studies have shown that NSCs have regulatory effects on neural cell rearrangement, neural plas-ticity and angiogenesis in damaged tissue. In adult neurogenesis, combinations of neurotrophic factors play an important role in the treatment of cerebrovascular, neurodegenerative, oncological diseases and post-traumatic inflammatory damage. In this review, current literature including pre-clinical and clinical studies for the modulating effect of neurotrophic factors on NSCs and their po-tential therapeutic treatment applications are brought together. It contains up-to-date information that would be beneficial for re-searchers and physicians working in this field.

Project Number

THZ-2016-21839

References

  • 1. Fortier, Lisa A. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005; 34(5): 415-23. [CrossRef] google scholar
  • 2. Cheung TH, Rando TA. Molecular regulation of stem cell quiescen-ce. Nat Rev Mol Cell Biol 2013; 14(6) :329-40. [CrossRef] google scholar
  • 3. Dulak J, Szade K, Szade A, Nowak W, Jözkowicz A. Adult stem cel-ls: hopes and hypes of regenerative medicine. Acta Biochim Pol 2015; 62(3): 329-37. [CrossRef] google scholar
  • 4. Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA. The new stem cell biology: something for everyone. Mol Pat-hol 2003; 56(2): 86-96. [CrossRef] google scholar
  • 5. Ralston A, Rossant J. The genetics of induced pluripotency. Reproduction 2010; 139(1): 35-44. [CrossRef] google scholar
  • 6. Bjornsson CS, Apostolopoulou M, Tian Y, Temple S. It takes a villa-ge: constructing the neurogenic niche. Dev Cell 2015; 32(4): 43546. [CrossRef] google scholar
  • 7. Lepousez G, Lledo PM. Life and death decision in adult neuroge-nesis: in praise of napping. Neuron 2011; 71(5): 768-71. [CrossRef] google scholar
  • 8. M.R. Akins, A.D.R. Garcia, Neurogenesis in the Adult Brain. Encyclo-pedia of Cell Biology 2016; 4: 134-40. [CrossRef] google scholar
  • 9. Altman J. Are new neurons formed in the brains of adult mam-mals? Science 1962; 135(3509): 1127-8. [CrossRef] google scholar
  • 10. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124: 319-35. [CrossRef] google scholar
  • 11. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969; 137(4): 433-57. [CrossRef] google scholar
  • 12. Sun W, Kim H, Moon Y. Control of neuronal migration through rostral migration stream in mice. Anatomy & Cell Biology 2010; 43: 269-79. [CrossRef] google scholar
  • 13. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003; 9(4): 439-47. [CrossRef] google scholar
  • 14. Bond AM, Ming GL, Song H. Adult Mammalian Neural Stem Cel-ls and Neurogenesis: Five Decades Later. Cell Stem Cell 2015; 17: 385-95. [CrossRef] google scholar 15. Gage FH. Mammalian neural stem cells. Science 2000; 287(5457): 1433-8. [CrossRef] google scholar
  • 16. Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8(5): a018820. [CrossRef] google scholar
  • 17. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 2006; 26(30): 7907-18. [CrossRef] google scholar
  • 18. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 2002; 16(9): 1681-9. [CrossRef] google scholar
  • 19. Doetsch F, Alvarez-Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A. 1996; 93(25): 14895-900. [CrossRef] google scholar
  • 20. Hatanaka Y, Zhu Y, Torigoe M, Kita Y, Murakami F. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc Jpn Acad Ser B Phys Biol Sci 2016; 92(1): 1-19. [CrossRef] google scholar
  • 21. Bonfanti L, Theodosis DT. Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal la-yer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience 1994; 62(1): 291-305. [CrossRef] google scholar
  • 22. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H. Consequ-ences of neural cell adhesion molecule deficiency on cell mig-ration in the rostral migratory stream of the mouse. J Neurosci 2000;20(4):1446-57. [CrossRef] google scholar
  • 23. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 1994; 264(5162): 1145-8. [CrossRef] google scholar
  • 24. Doetsch F, Garaa-Verdugo JM, Alvarez-Buylla A. Cellular compo-sition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997; 17(13): 5046-61. [CrossRef] google scholar
  • 25. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, et al. Prospective identification and purification of qu-iescent adult neural stem cells from their in vivo niche. Neuron 2014; 82(3): 545-59. [CrossRef] google scholar
  • 26. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A. Direct eviden-ce for homotypic, glia-independent neuronal migration. Neuron 1997; 18(5): 779-91. [CrossRef] google scholar
  • 27. Kheirbek MA. Finding the Roots of Adult Neurogenesis. Cell 2015; 161(7): 1500-2. [CrossRef] google scholar
  • 28. Alvarez-Buylla A, Garaa-Verdugo JM, Mateo AS, Merchant-Larios H. Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J Neurosci 1998; 18(3): 1020-37. [CrossRef] google scholar
  • 29. Garda-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 1998; 36(2): 234-48. [CrossRef] google scholar
  • 30. Gonzalez-Perez O, Alvarez-Buylla A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 2011;67(1-2):147-56. [CrossRef] google scholar
  • 31. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32:149-84. [CrossRef] google scholar
  • 32. Zhang J, Jiao J. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. Biomed Res Int 2015; 2015: 727542. [CrossRef] google scholar
  • 33. Jankovski A, Sotelo C. Subventricular zone-olfactory bulb migra-tory pathway in the adult mouse: cellular composition and speci-ficity as determined by heterochronic and heterotopic transplan-tation. J Comp Neurol 1996; 371(3): 376-96. [CrossRef] google scholar
  • 34. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008; 3(3): 279-88. [CrossRef] google scholar
  • 35. Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 2011; 3(5): a004960. [CrossRef] google scholar
  • 36. O'Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK. Tangential migration of neurons in the developing cerebral cor-tex. Development 1995; 121(7): 2165-76. google scholar
  • 37. Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8(4): 136-57. [CrossRef] google scholar
  • 38. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. Signaling at the gliovascular interface. J Neurosci 2003; 23(27): 9254-62. [CrossRef] google scholar
  • 39. Lalli G. Extracellular signals controlling neuroblast migration in the postnatal brain. Adv Exp Med Biol 2014; 800: 149-80. [CrossRef] google scholar
  • 40. Choe Y, Pleasure SJ, Mira H. Control of Adult Neurogenesis by Short-Range Morphogenic-Signaling Molecules. Cold Spring Harb Perspect Biol 2015; 8(3): a018887. [CrossRef] google scholar
  • 41. Garzon-Muvdi T, Quinones-Hinojosa A. Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J 2009; 51(1): 3-23. [CrossRef] google scholar
  • 42. Cole AE, Murray SS, Xiao J. Bone Morphogenetic Protein 4 Signal-ling in Neural Stem and Progenitor Cells during Development and after Injury. Stem Cells Int 2016; 2016: 9260592. [CrossRef] google scholar
  • 43. Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 2008; 363(1489): 123-37. [CrossRef] google scholar
  • 44. Ihrie RA, Alvarez-Buylla A. Cells in the astroglial lineage are neural stem cells. Cell Tissue Res 2008; 331(1): 179-91. [CrossRef] google scholar
  • 45. Seri B, Garaa-Verdugo JM, Collado-Morente L, McEwen BS, Alva-rez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 2004; 478(4): 35978. [CrossRef] google scholar
  • 46. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002; 415(6875): 1030-4. [CrossRef] google scholar
  • 47. Abbott LC, Nigussie F. Adult neurogenesis in the mammalian den-tate gyrus. Anat Histol Embryol 2020; 49(1): 3-16. [CrossRef] google scholar
  • 48. Laplagne DA, Esposito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, et al. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 2006; 4(12): e409. [CrossRef] google scholar
  • 49. Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modu-lation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits 2017; 11: 74. [CrossRef] google scholar
  • 50. Kazanis I. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expec-tations in the era of regenerative biology. Neuroscientist 2012; 18(1): 15-27. [CrossRef] google scholar
  • 51. Rusznak Z, Henskens W, Schofield E, Kim WS, Fu Y. Adult Neuroge-nesis and Gliogenesis: Possible Mechanisms for Neurorestoration. Exp Neurobiol 2016; 25(3): 103-12. [CrossRef] google scholar
  • 52. Lu QR, Cai L, Rowitch D, Cepko CL, Stiles CD. Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuro-nal survival in developing mouse cortex. Nat Neurosci 2001; 4(10): 973-4. [CrossRef] google scholar
  • 53. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dyna-mic microenvironment for stem cell niche. Biochim Biophys Acta 2014; 1840(8): 2506-19. [CrossRef] google scholar
  • 54. Falcao AM, Marques F, Novais A, Sousa N, Palha JA, Sousa JC. The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci 2012; 6: 34. [CrossRef] google scholar
  • 55. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 2005; 5(4): 401-6. [CrossRef] google scholar
  • 56. Wittko IM, Schanzer A, Kuzmichev A, Schneider FT, Shibuya M, Raab S, et al. VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stre-am in vivo. J Neurosci 2009; 29(27): 8704-14. [CrossRef] google scholar
  • 57. Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis 2010; 6(2): 107-14. [CrossRef] google scholar
  • 58. Kermani P, Hempstead B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 2007; 17(4): 140-3. [CrossRef] google scholar
  • 59. Delgado AC, Ferron SR, Vicente D, Porlan E, Perez-Villalba A, Trujillo CM, et al. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 2014; 83(3): 572-85. [CrossRef] google scholar
  • 60. Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med 2009; 4(6): 879-97. [CrossRef] google scholar
  • 61. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endot-helial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 2002; 99(18): 11946-50. [CrossRef] google scholar
  • 62. Funa K, Sasahara M. The roles of PDGF in development and du-ring neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2014; 9(2): 168-81. [CrossRef] google scholar
  • 63. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hino-josa A, VandenBerg S, et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 2006; 51(2): 187-99. [CrossRef] google scholar
  • 64. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 1999; 13(6): 450-64. [CrossRef] google scholar
  • 65. Marie C, Pedard M, Quirie A, Tessier A, Garnier P, Totoson P, et al. Brain-derived neurotrophic factor secreted by the cerebral endot-helium: A new actor of brain function? J Cereb Blood Flow Metab. 2018; 38(6): 935-49. [CrossRef] google scholar
  • 66. Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 2009; 25: 253-75. [CrossRef] google scholar
  • 67. Zhang H, Fang X, Huang D, Luo Q, Zheng M, Wang K, et al. Erythro-poietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol Med Rep 2018; 17(1): 264-72. [CrossRef] google scholar
  • 68. Benito M, Valverde AM, Lorenzo M. IGF-I: a mitogen also involved in differentiation processes in mammalian cells. Int J Biochem Cell Biol 1996; 28(5): 499-510. [CrossRef] google scholar
  • 69. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyeli-nation, and loss of hippocampal granule and striatal parvalbu-min-containing neurons. Neuron 1995; 14(4): 717-30. [CrossRef] google scholar
  • 70. Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, et al. Autoc-rine production of IGF-I increases stem cell-mediated neuroprote-ction. Stem Cells 2015; 33(5): 1480-9. [CrossRef] google scholar
  • 71. Carlson SW, Madathil SK, Sama DM, Gao X, Chen J, Saatman KE. Conditional overexpression of insulin-like growth factor-1 enhan-ces hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol 2014; 73(8): 734-46. [CrossRef] google scholar
  • 72. Liu J, Speder P, Brand AH. Control of brain development and ho-meostasis by local and systemic insulin signalling. Diabetes Obes Metab 2014; 16(Suppl 1): 16-20. [CrossRef] google scholar
  • 73. de Pablo F, de la Rosa EJ. The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 1995; 18(3): 143-50. [CrossRef] google scholar
  • 74. Supeno NE, Pati S, Hadi RA, Ghani AR, Mustafa Z, Abdullah JM, et al. IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci 2013; 10(5): 522-31. [CrossRef] google scholar
  • 75. Erickson RI, Paucar AA, Jackson RL, Visnyei K, Kornblum H. Roles of insulin and transferrin in neural progenitor survival and prolifera-tion. J Neurosci Res 2008; 86(8): 1884-94. [CrossRef] google scholar
  • 76. Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expres-sion and Function of the Epidermal Growth Factor Receptor in Phy-siology and Disease. Physiol Rev 2016; 96(3): 1025-69. [CrossRef] google scholar
  • 77. Galvez-Contreras AY, Gonzalez-Castaneda RE, Luquin S, Gonza-lez-Perez O. Role of fibroblast growth factor receptors in astrocytic stem cells. Curr Signal Transduct Ther 2012; 7(1): 81-6. [CrossRef] google scholar
  • 78. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 2010; 7(2): 16373. [CrossRef] google scholar
  • 79 Türeyen K, Vemuganti R, Bowen KK, Sailor KA, Dempsey RJ EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain Neurosurgery 2005; 57(6): 1254-63; discussion 1254-63 [CrossRef] google scholar
  • 80 Woodbury ME, Ikezu T Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration J Neuroimmune Pharma-col 2014; 9(2): 92-101 [CrossRef] google scholar
  • 81 Iwata T, Hevner RF Fibroblast growth factor signaling in develop-ment of the cerebral cortex Dev Growth Differ 2009; 51(3): 299323 [CrossRef] google scholar
  • 82 Werner S, Unsicker K, von Bohlen und Halbach O Fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2 J Neurosci Res 2011; 89(10): 1605-17 [CrossRef] google scholar
  • 83 . Newman MP, Feron F, Mackay-Sim A . Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 2000; 99(2): 343-50. [CrossRef] google scholar
  • 84. Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, et al. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2013; 2: e00362. [CrossRef] google scholar
  • 85. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, et al. Mul-tipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neuros-ci 1996; 16(3): 1091-100. [CrossRef] google scholar
  • 86. Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demons-trates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001; 21(18): 7194-202. [CrossRef] google scholar
  • 87. Kim SE, Lee JJ, Song YS. Neurodegenerative diseases. In Clinical PET and PET/CT: Principles and Applications. Springer New York; 2013; p. 151-173. [CrossRef] google scholar
  • 88. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogene-sis and neurodegenerative diseases: A systems biology perspecti-ve. Am J Med Genet B Neuropsychiatr Genet 2017; 174(1): 93-112. [CrossRef] google scholar
  • 89. Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diag-nostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011; 72(2): 126-33. [CrossRef] google scholar
  • 90. Dickson DW. Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258. [CrossRef] google scholar
  • 91. DeTure MA, Dickson DW. The neuropathological diagnosis of Alz-heimer's disease. Mol Neurodegener 2019; 14(1): 32. [CrossRef] google scholar
  • 92. Nopoulos PC. Huntington disease: a single-gene degenerative di-sorder of the striatum. Dialogues Clin Neurosci 2016; 18(1): 91-8. [CrossRef] google scholar
  • 93. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psyc-hiatry 2020; 19(1): 15-33. [CrossRef] google scholar
  • 94. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in sc-hizophrenia: an update for the 21st century. J Psychopharmacol 2015; 29(2): 97-115. [CrossRef] google scholar
  • 95. Weissmiller AM, Wu C. Current advances in using neurotrophic fa-ctors to treat neurodegenerative disorders. Transl Neurodegener 2012; 1(1): 14. [CrossRef] google scholar
  • 96. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 1998; 36(2): 287-306. [CrossRef] google scholar
  • 97. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrop-hic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10: 486. [CrossRef] google scholar
  • 98. Numakawa T, Odaka H, Adachi N. Actions of Brain-Derived Neurot-rophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci 2018; 19(11): 3650. [CrossRef] google scholar
  • 99. Gharami K, Xie Y, An JJ, Tonegawa S, Xu B. Brain-derived neurot-rophic factor over-expression in the forebrain ameliorates Hun-tington's disease phenotypes in mice. J Neurochem 2008; 105(2): 369-79. [CrossRef] google scholar
  • 100. Carradori D, Eyer J, Saulnier P, Preat V, des Rieux A. The therapeutic contribution of nanomedicine to treat neurodegenerative disea-ses via neural stem cell differentiation. Biomaterials 2017; 123: 7791. [CrossRef] google scholar
  • 101. Schindowski K, Belarbi K, Buee L. Neurotrophic factors in Alzhei-mer's disease: role of axonal transport. Genes Brain Behav 2008;7 Suppl 1(1): 43-56. [CrossRef] google scholar
  • 102. Regensburger M, Prots I, Winner B. Adult hippocampal neuroge-nesis in Parkinson's disease: impact on neuronal survival and plas-ticity. Neural Plast 2014; 2014: 454696. [CrossRef] google scholar
  • 103. Tang JJ, Podratz JL, Lange M, Scrable HJ, Jang MH, Windebank AJ. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain. Mol Brain 2017; 10(1): 23. [CrossRef] google scholar
  • 104. Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Car-meliet P. The neurovascular link in health and disease: an update. Trends Mol Med 2009; 15(10): 439-51. [CrossRef] google scholar
  • 105. Lee, Bun-Hee, and Yong-Ku Kim. Increased plasma VEGF levels in major depressive or manic episodes in patients with mood disorders. Journal of Affective Disorders 2012; 136(1/2): 181-4. [CrossRef] google scholar
  • 106. Giuffrida ML, Copani A, Rizzarelli E. A promising connection between BDNF and Alzheimer's disease. Aging (Albany NY). 2018; 10(8): 1791-2. [CrossRef] google scholar
  • 107. Pandini G, Satriano C, Pietropaolo A, Gianl F, Travaglia A, La Men-dola D, et al. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci 2016; 10: 569. [CrossRef] google scholar
  • 108. Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, et al. Targeted delivery of nerve growth factor to the choli-nergic basal forebrain of Alzheimer's disease patients: application of a second-generation encapsulated cell biodelivery device. Alz-heimers Res Ther 2016; 8(1): 30. [CrossRef] google scholar
  • 109. Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzhe-imer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13: 38. [CrossRef] google scholar
  • 110. Suzuki K, Suzuki S, Ishii Y, Fujita H, Matsubara T, Okamura M, et al. Serum insulin-like growth factor-1 levels in neurodegenerative diseases. Acta Neurol Scand 2019; 139(6): 563-7. [CrossRef] google scholar
  • 111. Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, et al. Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv 2018; 25(1): 1560-9. [CrossRef] google scholar
  • 112. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadoms-ki W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21(3): 1170. [CrossRef] google scholar
  • 113. Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, et al. Extended Treatment with Glial Cell Line-Derived Neurotrophic Factor in Parkinson's Disease. J Parkinsons Dis 2019; 9(2): 301-13. [CrossRef] google scholar
  • 114. Huttunen HJ, Saarma M. CDNF Protein Therapy in Parkinson's Di-sease. Cell Transplant 2019; 28(4): 349-66. [CrossRef] google scholar
  • 115. Numao A, Suzuki K, Miyamoto M, Miyamoto T, Hirata K. Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 2014; 20(2): 212-6. [CrossRef] google scholar
  • 116. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington's disease. Prog Neurobiol 2007; 81(5-6): 294-330. [CrossRef] google scholar
  • 117. Martı'nez-Serrano A, Björklund A. Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, geneti-cally modified neural stem cells. J Neurosci 1996; 16(15): 4604-16. [CrossRef] google scholar
  • 118. Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-Derived BDN-F-Overexpressing Neural Progenitors Differentially Promote Reco-very in Huntington's Disease Models by Enhanced Striatal Diffe-rentiation. Stem Cell Reports 2016; 7(4): 693-706. [CrossRef] google scholar
  • 119. Yusuf IO, Cheng PH, Chen HM, Chang YF, Chang CY, Yang HI, et al. Fibroblast Growth Factor 9 Suppresses Striatal Cell Death Domi-nantly Through ERK Signaling in Huntington's Disease. Cell Physi-ol Biochem 2018; 48(2): 605-17. [CrossRef] google scholar
  • 120. Gören JL. Brain-derived neurotrophic factor and schizophrenia. Ment Health Clin 2016; 6(6): 285-8. [CrossRef] google scholar
  • 121. Neugebauer K, Hammans C, Wensing T, Kumar V, Grodd W, Me-vissen L, et al. Nerve Growth Factor Serum Levels Are Associated With Regional Gray Matter Volume Differences in Schizophrenia Patients. Front Psychiatry 2019; 10: 275. [CrossRef] google scholar
  • 122. Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diag-nosis and evaluation of treatment for schizophrenia and depressi-on. Discov Med 2018; 26(143): 127-36. google scholar
  • 123. Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 2010; 7(4): 231-5. [CrossRef] google scholar
  • 124. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healt-hy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [CrossRef] google scholar
  • 125. Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003; 3(2): 90-105, 51. [CrossRef] google scholar
  • 126. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of bra-in-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998; 37(12): 1553-61. [CrossRef] google scholar
  • 127. Poduslo JF, Curran GL. Permeability at the blood-brain and blo-od-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 1996; 36(2): 280-6. [CrossRef] google scholar
  • 128. Fu H, McCarty DM. Crossing the blood-brain-barrier with viral vec-tors. Curr Opin Virol 2016; 21: 87-92. [CrossRef] google scholar
  • 129. Sivandzade F, Cucullo L. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. J Cereb Blood Flow Metab 2018; 38(10): 1667-81. [CrossRef] google scholar
  • 130. Jaeger CB, Winn SR, Tresco PA, Aebischer P. Repair of the blo-od-brain barrier following implantation of polymer capsules. Bra-in Res 1991; 551(1-2): 163-70. [CrossRef] google scholar 131. Ghosh D, Peng X, Leal J, Mohanty R. Peptides as drug delivery ve-hicles across biological barriers. J Pharm Investig 2018; 48(1): 89111. [CrossRef] google scholar
  • 132. Wang Y, Gallagher E, Jorgensen C, Troendle EP, Hu D, Searson PC, et al. An experimentally validated approach to calculate the blo-od-brain barrier permeability of small molecules. Sci Rep 2019; 9(1): 6117. [CrossRef] google scholar
  • 133. Xing H, Hwang K, Lu Y. Recent Developments of Liposomes as Na-nocarriers for Theranostic Applications. Theranostics 2016; 6(9): 1336-52. [CrossRef] google scholar
  • 134. Chen C, Duan Z, Yuan Y, Li R, Pang L, Liang J, et al. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. ACS Appl Mater Interfaces. 2017; 9(7): 5864-73. [CrossRef] google scholar
  • 135. Pardridge WM. Neurotrophins, neuroprotection and the blo-od-brain barrier. Curr Opin Investig Drugs 2002; 3(12): 1753-7. google scholar
  • 136. Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 2017; 11: 325-35. [CrossRef] google scholar
There are 134 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Fatih Toprak 0000-0002-5232-6286

Selin Toprak 0000-0003-2882-3351

Selcuk Sozer Tokdemir 0000-0002-5035-4048

Project Number THZ-2016-21839
Publication Date May 3, 2021
Submission Date November 26, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

Vancouver Toprak F, Toprak S, Sozer Tokdemir S. Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. Experimed. 2021;11(1):57-66.