Research Article
BibTex RIS Cite

Diyabetik Sıçan Karaciğerinde Pazı Ekstresinin Glikoprotein Bileşikleri ve İleri Oksidasyon Protein Ürün Seviyeleri Üzerindeki Koruyucu Etkisi

Year 2021, Volume: 11 Issue: 1, 27 - 32, 03.05.2021
https://doi.org/10.26650/experimed.2021.879204

Abstract

Amaç: Diyabet, yaşam kalitesini düşüren ve hatta ölüme neden olan, tüm dünyada birçok insanı etkileyen metabolik bir hastalık-tır. Bu yüzden diyabet üzerine yapılan araştırmalar popülerliğini korumakta ve gelişimini devam ettirmektedir. Pazı (Beta vulgarisL. var. cicla) Türkiye'de şeker hastalarının alternatif hipoglisemik ajan olarak kullandığı bir bitkidir. Bu çalışmada pazı ekstraktının, diyabetik sıçanların karaciğer dokusunda bulunan glikoprotein-ler (heksoz, heksozamin, fukoz ve siyalik asit) ve ileri oksidasyon protein ürün seviyeleri üzerindeki koruyucu etkisinin araştırılması amaçlanmıştır.

Gereç ve Yöntem: Deneyde kullanılan erkek Sprague-Dawley sı-çanları 3 gruba ayrıldı. Kontrol sıçanları; Streptozotosin (STZ) ile di-yabetik yapılan sıçanlar; pazı ekstresi verilen STZ diyabetik sıçanlar; Sıçanların diyabet olmasından on dört gün sonra, sıçanlara pazı ekstresi (2 g/kg/gün, gavaj ile) belirtilen dozda 45 gün uygulandı. 60. günde sıçan karaciğerleri çıkarıldı ve glikoproteinler ve ileri ok-sidasyon protein ürünlerinin analizi için %10 (w/v) karaciğer homo-jenizatları hazırlandı.

Bulgular: Yapılan deneyler sonucunda diyabetik sıçanların gli-koprotein parametreleri olan heksoz, heksozamin, fukoz, siyalik asit ve ileri oksidasyon protein ürün seviyelerinin arttığı bulunmuş-tur. Pazı ekstresinin uygulaması, incelenen biyokimyasal parametre değerlerinin tersine çevirdiği belirlenmiştir.

Sonuç: Elde edilen sonuçlardan pazı ektresinin diyabetik sıçanlar üzerinde koruyucu bir etkiye sahip olduğu ileri sürülebilir.

Supporting Institution

İstanbul Üniversitesi/İstanbul Üniversitesi-Cerrahpaşa

Project Number

BYP-46945

References

  • 1. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul Health Manag 2017; 20: 6-12. [CrossRef] google scholar
  • 2. Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004; 92: 1-21. [CrossRef] google scholar
  • 3. Spiro RG. Glycoproteins: Their biochemistry, biology and role in human disease. N Engl J Med 1969; 281: 1043-56. [CrossRef] google scholar
  • 4. Varki A. Biological roles of glycans. Glycobiology 2017; 27: 3-49. [CrossRef] google scholar
  • 5. Porter-Turner MM, Sidmore JC, Khokher MA, Singh BM, Rea CA. Relationship between erythrocyte GLUT1 function and membra-ne glycation in type 2 diabetes. Br J Biomed Sci 2011; 68: 203-7. [CrossRef] google scholar
  • 6. Patti ME, Virkamaki A, Landaker EJ, Kahan CR, Yki-Jarvinen H. Activation of the hexosamine pathway by glucosamine in vivo induces insülin resistance of early postreceptor insulin sig-naling events in skeletal muscle. Diabetes 1999; 48: 1562-71. [CrossRef] google scholar
  • 7. Kalousova M, Skrha J, Zima T. Advanced glycation endproducts and advanced oxidation protein products in patients with diabe-tes mellitus. Physiol Res 2002; 51: 597-604. google scholar
  • 8. Hu X, Sato J, Oshida Y, Yu M, Bajotto G, Sato Y. Effect of Goshajinki- google scholar
  • gan (Chinese herbal medicine): Niu-che-sen-qi-wan on insulin re-sistance in streptozotocin induced diabetic rats. Diabetes Res Clin Pract 2003; 59: 103-11. [CrossRef] google scholar
  • 9. Ninfali P, Antonini E, Frati A, Scarpa ES. C-Glycosyl flavonoids from Beta vulgaris cicla and betalains from Beta vulgaris rubra: Antioxi-dant, anticancer and antiinflammatory activities-A review. Phytot-her Res 2017; 31: 871-84. [CrossRef] google scholar
  • 10. Bursal E. Kinetic properties of peroxidase enzyme from chard (Beta vulgaris Subspecies cicla) leaves. Int J Food Prop 2013; 16: 1293-303. [CrossRef] google scholar
  • 11. Ustundag UV, Tunali S, Alev B, Ipekci H. Emekli-Alturfan E, Tunalı Akbay T, Yanardag R, Yarat A. Effects of chard (Beta vulgaris L. var. cicla) on cardiac damage in valproic acid-induced toxicity. J Food Biochem 2016; 40: 132-9. [CrossRef] google scholar
  • 12. Sacan O, Yanardag R. Antioxidant and antiacetylcholinesterase activities of chard (Beta vulgaris L. var. cicla). Food Chem Toxicol 2010; 48, 1275-80. [CrossRef] google scholar
  • 13. Ozsoy-Sacan O, Karabulut-Bulan O, Bolkent S, Yanardag R, Ozgey Y. Effects of chard (Beta vulgaris L. var cicla) on the liver of the dia-betic rats: a morphological and biochemical study. Biosci Biotech-nol Biochem 2004; 68: 1640-8. [CrossRef] google scholar
  • 14. Gezginci-Oktayoglu S, Sacan O, Bolkent S, Ipci Y, Kabasakal L, Se-ner G, Yanardag R, Chard (Beta vulgaris L. var. cicla) extract ame-liorates hyperglycemia by increasing GLUT2 through Akt2 and antioxidant defense in the liver of rats. Acta Histochem 2014; 116: 32-9. [CrossRef] google scholar
  • 15. Kim I, Chin YW, Lim SW, Kim YC, Kim J. Norisoprenoids and hepa-toprotective flavone glycosides from the aerial parts of Beta vul-garis var. cicla. Arch Pharm Res 2004; 27: 600-3. [CrossRef] google scholar
  • 16. Trifunovic S, Topalovic A, Knezevic M, Vajs V. Free radicals and an-tioxidants: antioxidative and other properties of Swiss chard (Beta vulgaris L. subsp cicla). Agric Forest 2015; 61: 73-97. [CrossRef] google scholar
  • 17. Winzler RJ. Determination of serum glycoproteins. In: Glick DP, editor. Methods of Biochemical Analysis. New York: Interscience Publisher Inc 1955.p.279. [CrossRef] google scholar
  • 18. Dische Z, Shettles LB. A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J Biol Chem 1948; 175: 595-603. [CrossRef] google scholar
  • 19. Lorentz K, Weiss T, Kraas E. Sialic acid in human serum and ce-rebrospinal fluid. Comparison of methods and reference values. J Clin Chem Clin Biochem 1986; 24: 189-98. [CrossRef] google scholar
  • 20. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49: 1304-13. [CrossRef] google scholar
  • 21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measure-ment with the Folin phenol reagent. J Biol Chem 1951; 193: 26575. [CrossRef] google scholar
  • 22. Tomlinson KC, Gardiner SM, Hebden RA, Bennett T. Functional-consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 1992; 44: 103-50. google scholar
  • 23. Pari L, Umamaheswari, J. Antihyperglycaemic activity of Musa sa-pientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytoter Res 2000; 14: 136-8. [CrossRef] google scholar
  • 24. Muthukumaran J, Srinivasan S, Venkatesan RS, Ramachandran V, Muruganathana, U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprote-in components in experimental diabetic rats. J Acute Dis 2013; 2: 304-9. [CrossRef] google scholar
  • 25. Sacan O, Ertik O, Ipci Y, Kabasakal L, Sener G, Yanardag R. Protec-tive effect of chard extract on glycoprotein compounds and enz-yme activities in streptozotocin-induced hyperglycemic rat lungs. Bulg Chem Commun 2018; 50: 119-23. google scholar
  • 26. Ciftci G, Cenesiz S, Yarim GF, Nisbet O, Nisbet C, Cenesiz M, et al. Ef-fect of fluoride exposure on serum glycoprotein pattern and sialic. Biol Trace Elem Res 2010; 133: 51-9. [CrossRef] google scholar
  • 27. Moussa MA, Alsaeid M, Refai TM, Abdella N, Al- Sheikh N, Gomez JE. Association of serum sialic acid with cardiovascular metabolic risk factors in Kuwaiti children and adolescents with type 1 diabe-tes. Metabolism 2004; 53: 638-43. [CrossRef] google scholar
  • 28. Gavella M, Lipovac V, Car A, Vucic M, Sokolic L, Rakos R. Serum sia-lic acid in subjects with impaired glucose tolerance and in newly diagnosed type 2 diabetic patients. Acta Diabetol 2003; 45: 95100. [CrossRef] google scholar
  • 29. Piwowar A, Knapik-Kordecka M, Warwas M. AOPP and its relations with selected markers of oxidative/antioxidative system in type 2 diabetes mellitus. Diabetes Res Clin Pract 2007; 77: 188-92. [CrossRef] google scholar
  • 30. D. Gradinaru C. Borsa C. Ionescu D. Margin, Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes. J Proteomics 2013; 92: 313-22. [CrossRef] google scholar0

Protective Effect of Chard Extract on Glycoprotein Compounds and Advanced Oxidation Protein Product Levels in Diabetic Rat Livers

Year 2021, Volume: 11 Issue: 1, 27 - 32, 03.05.2021
https://doi.org/10.26650/experimed.2021.879204

Abstract

Objective: Diabetes mellitus is a metabolic disease of global im-portance. It affects many people by reducing their quality of life and even causing death. Therefore, research on diabetes mellitus maintains its popularity and continues to develop. Chard (Beta vulgaris L. var. cicla) is commonly used in diets and is known to have alternative hypoglycemic effects in diabetic individuals. This study investigated the protective effects of chard on glycoproteins (hexose, hexosamine, fucose and sialic acid) and the advanced ox-idation protein product levels in diabetic rats’ livers.

Materials and Methods: For this experiment, male Sprague–Daw-ley rats were separated into three groups: the control; Streptozoto-cin (STZ)-induced diabetic rats; and STZ-induced diabetic + chard extract. Fourteen days after diabetes induction, chard extract (2 g/kg/day, gavage) was administered for 45 days. On day 60, liver samples were collected, and 10% (w/v) homogenate was prepared for the analysis of glycoprotein components and advanced oxida-tion protein products.

Results: Levels of glycoprotein parameters that include hexose, hexosamine, fucose, and sialic acid, as well as advanced oxidation protein product levels, increased in the diabetic group. Chard ex-tract administration curatively reverted the altered biochemical parameters.

Conclusion: From the results obtained, it can be suggested that chard extract has a protective effect on the diabetic livers of rats.

Project Number

BYP-46945

References

  • 1. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul Health Manag 2017; 20: 6-12. [CrossRef] google scholar
  • 2. Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004; 92: 1-21. [CrossRef] google scholar
  • 3. Spiro RG. Glycoproteins: Their biochemistry, biology and role in human disease. N Engl J Med 1969; 281: 1043-56. [CrossRef] google scholar
  • 4. Varki A. Biological roles of glycans. Glycobiology 2017; 27: 3-49. [CrossRef] google scholar
  • 5. Porter-Turner MM, Sidmore JC, Khokher MA, Singh BM, Rea CA. Relationship between erythrocyte GLUT1 function and membra-ne glycation in type 2 diabetes. Br J Biomed Sci 2011; 68: 203-7. [CrossRef] google scholar
  • 6. Patti ME, Virkamaki A, Landaker EJ, Kahan CR, Yki-Jarvinen H. Activation of the hexosamine pathway by glucosamine in vivo induces insülin resistance of early postreceptor insulin sig-naling events in skeletal muscle. Diabetes 1999; 48: 1562-71. [CrossRef] google scholar
  • 7. Kalousova M, Skrha J, Zima T. Advanced glycation endproducts and advanced oxidation protein products in patients with diabe-tes mellitus. Physiol Res 2002; 51: 597-604. google scholar
  • 8. Hu X, Sato J, Oshida Y, Yu M, Bajotto G, Sato Y. Effect of Goshajinki- google scholar
  • gan (Chinese herbal medicine): Niu-che-sen-qi-wan on insulin re-sistance in streptozotocin induced diabetic rats. Diabetes Res Clin Pract 2003; 59: 103-11. [CrossRef] google scholar
  • 9. Ninfali P, Antonini E, Frati A, Scarpa ES. C-Glycosyl flavonoids from Beta vulgaris cicla and betalains from Beta vulgaris rubra: Antioxi-dant, anticancer and antiinflammatory activities-A review. Phytot-her Res 2017; 31: 871-84. [CrossRef] google scholar
  • 10. Bursal E. Kinetic properties of peroxidase enzyme from chard (Beta vulgaris Subspecies cicla) leaves. Int J Food Prop 2013; 16: 1293-303. [CrossRef] google scholar
  • 11. Ustundag UV, Tunali S, Alev B, Ipekci H. Emekli-Alturfan E, Tunalı Akbay T, Yanardag R, Yarat A. Effects of chard (Beta vulgaris L. var. cicla) on cardiac damage in valproic acid-induced toxicity. J Food Biochem 2016; 40: 132-9. [CrossRef] google scholar
  • 12. Sacan O, Yanardag R. Antioxidant and antiacetylcholinesterase activities of chard (Beta vulgaris L. var. cicla). Food Chem Toxicol 2010; 48, 1275-80. [CrossRef] google scholar
  • 13. Ozsoy-Sacan O, Karabulut-Bulan O, Bolkent S, Yanardag R, Ozgey Y. Effects of chard (Beta vulgaris L. var cicla) on the liver of the dia-betic rats: a morphological and biochemical study. Biosci Biotech-nol Biochem 2004; 68: 1640-8. [CrossRef] google scholar
  • 14. Gezginci-Oktayoglu S, Sacan O, Bolkent S, Ipci Y, Kabasakal L, Se-ner G, Yanardag R, Chard (Beta vulgaris L. var. cicla) extract ame-liorates hyperglycemia by increasing GLUT2 through Akt2 and antioxidant defense in the liver of rats. Acta Histochem 2014; 116: 32-9. [CrossRef] google scholar
  • 15. Kim I, Chin YW, Lim SW, Kim YC, Kim J. Norisoprenoids and hepa-toprotective flavone glycosides from the aerial parts of Beta vul-garis var. cicla. Arch Pharm Res 2004; 27: 600-3. [CrossRef] google scholar
  • 16. Trifunovic S, Topalovic A, Knezevic M, Vajs V. Free radicals and an-tioxidants: antioxidative and other properties of Swiss chard (Beta vulgaris L. subsp cicla). Agric Forest 2015; 61: 73-97. [CrossRef] google scholar
  • 17. Winzler RJ. Determination of serum glycoproteins. In: Glick DP, editor. Methods of Biochemical Analysis. New York: Interscience Publisher Inc 1955.p.279. [CrossRef] google scholar
  • 18. Dische Z, Shettles LB. A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J Biol Chem 1948; 175: 595-603. [CrossRef] google scholar
  • 19. Lorentz K, Weiss T, Kraas E. Sialic acid in human serum and ce-rebrospinal fluid. Comparison of methods and reference values. J Clin Chem Clin Biochem 1986; 24: 189-98. [CrossRef] google scholar
  • 20. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49: 1304-13. [CrossRef] google scholar
  • 21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measure-ment with the Folin phenol reagent. J Biol Chem 1951; 193: 26575. [CrossRef] google scholar
  • 22. Tomlinson KC, Gardiner SM, Hebden RA, Bennett T. Functional-consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 1992; 44: 103-50. google scholar
  • 23. Pari L, Umamaheswari, J. Antihyperglycaemic activity of Musa sa-pientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytoter Res 2000; 14: 136-8. [CrossRef] google scholar
  • 24. Muthukumaran J, Srinivasan S, Venkatesan RS, Ramachandran V, Muruganathana, U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprote-in components in experimental diabetic rats. J Acute Dis 2013; 2: 304-9. [CrossRef] google scholar
  • 25. Sacan O, Ertik O, Ipci Y, Kabasakal L, Sener G, Yanardag R. Protec-tive effect of chard extract on glycoprotein compounds and enz-yme activities in streptozotocin-induced hyperglycemic rat lungs. Bulg Chem Commun 2018; 50: 119-23. google scholar
  • 26. Ciftci G, Cenesiz S, Yarim GF, Nisbet O, Nisbet C, Cenesiz M, et al. Ef-fect of fluoride exposure on serum glycoprotein pattern and sialic. Biol Trace Elem Res 2010; 133: 51-9. [CrossRef] google scholar
  • 27. Moussa MA, Alsaeid M, Refai TM, Abdella N, Al- Sheikh N, Gomez JE. Association of serum sialic acid with cardiovascular metabolic risk factors in Kuwaiti children and adolescents with type 1 diabe-tes. Metabolism 2004; 53: 638-43. [CrossRef] google scholar
  • 28. Gavella M, Lipovac V, Car A, Vucic M, Sokolic L, Rakos R. Serum sia-lic acid in subjects with impaired glucose tolerance and in newly diagnosed type 2 diabetic patients. Acta Diabetol 2003; 45: 95100. [CrossRef] google scholar
  • 29. Piwowar A, Knapik-Kordecka M, Warwas M. AOPP and its relations with selected markers of oxidative/antioxidative system in type 2 diabetes mellitus. Diabetes Res Clin Pract 2007; 77: 188-92. [CrossRef] google scholar
  • 30. D. Gradinaru C. Borsa C. Ionescu D. Margin, Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes. J Proteomics 2013; 92: 313-22. [CrossRef] google scholar0
There are 31 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Onur Ertik 0000-0002-9686-8634

Ozlem Sacan 0000-0001-6503-4613

Levent Kabasakal 0000-0002-5474-6436

Göksel Şener 0000-0001-7444-6193

Refiye Yanardağ 0000-0003-4185-4363

Project Number BYP-46945
Publication Date May 3, 2021
Submission Date February 12, 2021
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

Vancouver Ertik O, Sacan O, Kabasakal L, Şener G, Yanardağ R. Protective Effect of Chard Extract on Glycoprotein Compounds and Advanced Oxidation Protein Product Levels in Diabetic Rat Livers. Experimed. 2021;11(1):27-32.