Research Article
BibTex RIS Cite

STRUCTURE OF ELECTRIC CARS AND FIRE RISKS

Year 2022, Volume: 10 Issue: 1, 1 - 8, 31.12.2022
https://doi.org/10.52702/fce.1057432

Abstract

Electric cars; The rapid development of lithium-ion battery technology has dramatically changed the automobile industry worldwide in recent years. The fact that the number of electric cars has increased considerably today also increases the probability of being involved in traffic accidents. The most important problem that we encounter as a result of traffic accidents is automobile fires. In this study, the structure of electric cars is analyzed. The types of batteries used are examined and information about battery types is given. Fire risks in electric cars are being evaluated.

References

  • [1] N. Nitta, F. Wu, T. Lee and G. Yushin, “Li-Ion Battery Materials: Present and Future,” Materials Today, vol. 18, pp. 252-264, 2015.
  • [2] Linden, D. and Reddy, T., Handbook of Batteries, 4 ed., New-York: McGraw-Hill, 2011.
  • [3] B. Sims and S. Crase, “Review of Battery Technologies for Military Land Vehicles,” Land Division, Defence Science and Technology Group, Edinburgh, Australia, 2017.
  • [4] Golubkov, A. W., Planteu, R., Rasch, B., Essl, C., Thaler, A. and Hacker, V., “Thermal runaway and battery fire: comparison of Li-ion, Ni-MH and sealed lead-acid batteries,” in Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, Vienna, 2018.
  • [5] S. B. Chikkannanavar, D. M. Bernardi and L. Liu, “A Review of Blended Cathode Materials for use in Li-Ion Batteries,” Journal of Power Sources, vol. 248, pp. 91-100, 2014.
  • [6] C. M. Julien, A. Mauger, J. Trottier, K. Zhaghib, P. Hovington and H. Groult, “Olivine-Based Blended Compounds as Positive Electrodes for Lithium Batteries,” Inorganics, vol. 4, pp. 1-12, 2016.
  • [7] Wang Q, Mao B, Stoliarov SI, Sun J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science 2019;73:95–131. doi:10.1016/j.pecs.2019.03.002.
  • [8] Andersson P, Wikman J, Arvidson M, Larsson F, Willstrand O. Safe introduction of battery propulsion at sea. RISE Research Institutes of Sweden 2017.
  • [9] Tobishima SI, Yamaki JI. A consideration of lithium cell safety. Journal of Power Sources 1999;81–82:882–6. doi:10.1016/S0378-7753(98)00240-7.
  • [10] Evarts EC. Lithium batteries: To the limits of lithium. Nature 2015;526:S93–5. doi:10.1038/526S93a.
  • [11] Lecocq A, Eshetu GG, Grugeon S, Martin N, Laruelle S, Marlair G. Scenario-based prediction of Li-ion batteries fire-induced toxicity. Journal of Power Sources 2016;316:197–206. doi:10.1016/j.jpowsour.2016.02.090.
  • [12] Schiemann M, Bergthorson J, Fischer P, Scherer V, Taroata D, Schmid G. A review on lithium combustion. Applied Energy 2016;162:948–65. doi:10.1016/j.apenergy.2015.10.172.
  • [13] H. Cui and G. Xiao, “Fuel-Efficiency Technology Trend Assessment for LDVs in China: Hybrids and Electrification,” The International Council on Clean Transportation, 2018.
  • [14] Hao M, Li J, Park S, Moura S, Dames C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nature Energy 2018;3:899–906. doi:10.1038/s41560-018-0243-8.
  • [15] Blum A, Long RT. Full-scale Fire Tests of Electric Drive Vehicle Batteries. SAE International Journal of Passenger Cars - Mechanical Systems 2015;8:565–72. doi:10.4271/2015-01-1383.
  • [16] Justen R, Schöneburg R. Crash Safety of Hybrid and Battery Electric Vehicles. 22nd Enhanced Safety of Vehicles Conference, Washington: 2011.
  • [17] Wisch M, J. Ott RT, Léost Y, Abert M, Yao J. Recommendations and Guidelines for Battery Crash Safety and Post-Crash Handling. EVERSAFE 2014.
  • [18] Fairley P. Speed bumps ahead for electric-vehicle charging. IEEE Spectrum 2010;47:13–4. doi:10.1109/MSPEC.2010.5372476.
  • [19] Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy 2017;2. doi:10.1038/nenergy.2017.12.
  • [20] Drysdale D. An Introduction to Fire Dynamics. 3rd ed. Chichester, UK: John Wiley & Sons, Ltd; 2011. doi:10.1002/9781119975465.
  • [21] Larsson F. Lithium-ion Battery Safety-Assessment by Abuse Testing, Fluoride Gas Emissions and Fire Propagation. Chalmers University of Technology, 2017.
  • [22] Said AO, Lee C, Stoliarov SI, Marshall AW. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Applied Energy 2019;248:415–28. doi:10.1016/j.apenergy.2019.04.141.
  • [23] Kong L, Li C, Jiang J, Pecht MG. Li-ion battery fire hazards and safety strategies. Energies 2018;11:1–11. doi:10.3390/en11092191.
  • [24] G. E. Blomgren, “The Development and Future of Lithium Ion Batteries,” Journal of the Electrochemical Society, vol. 164, no. 1, pp. A5019-A5025, 2017

Elektrikli Otomobillerin Yapısı ve Yangın Riskleri

Year 2022, Volume: 10 Issue: 1, 1 - 8, 31.12.2022
https://doi.org/10.52702/fce.1057432

Abstract

Elektrikli otomobiller; lityum iyon pil teknolojisinin hızlı gelişimi sayesinde son yıllarda dünya genelinde otomobil sektörünü önemli ölçüde değiştirdi. Elektrikli otomobillerin sayıların günümüzde oldukça artmış olması meydana gelen trafik kazalarında bulunma olasılıklarını da arttırmaktadır. Trafik kazaları sonucu karşımıza çıkan en önemli sorun otomobil yangınlarıdır. Bu çalışmada elektrikli otomobillerin yapısı analiz edilmektedir. Kullanılan batarya türleri incelenerek batarya tipleri hakkında bilgi verilmektedir. Elektrikli otomobillerdeki yangın riskleri değerlendirilmektedir.

References

  • [1] N. Nitta, F. Wu, T. Lee and G. Yushin, “Li-Ion Battery Materials: Present and Future,” Materials Today, vol. 18, pp. 252-264, 2015.
  • [2] Linden, D. and Reddy, T., Handbook of Batteries, 4 ed., New-York: McGraw-Hill, 2011.
  • [3] B. Sims and S. Crase, “Review of Battery Technologies for Military Land Vehicles,” Land Division, Defence Science and Technology Group, Edinburgh, Australia, 2017.
  • [4] Golubkov, A. W., Planteu, R., Rasch, B., Essl, C., Thaler, A. and Hacker, V., “Thermal runaway and battery fire: comparison of Li-ion, Ni-MH and sealed lead-acid batteries,” in Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, Vienna, 2018.
  • [5] S. B. Chikkannanavar, D. M. Bernardi and L. Liu, “A Review of Blended Cathode Materials for use in Li-Ion Batteries,” Journal of Power Sources, vol. 248, pp. 91-100, 2014.
  • [6] C. M. Julien, A. Mauger, J. Trottier, K. Zhaghib, P. Hovington and H. Groult, “Olivine-Based Blended Compounds as Positive Electrodes for Lithium Batteries,” Inorganics, vol. 4, pp. 1-12, 2016.
  • [7] Wang Q, Mao B, Stoliarov SI, Sun J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science 2019;73:95–131. doi:10.1016/j.pecs.2019.03.002.
  • [8] Andersson P, Wikman J, Arvidson M, Larsson F, Willstrand O. Safe introduction of battery propulsion at sea. RISE Research Institutes of Sweden 2017.
  • [9] Tobishima SI, Yamaki JI. A consideration of lithium cell safety. Journal of Power Sources 1999;81–82:882–6. doi:10.1016/S0378-7753(98)00240-7.
  • [10] Evarts EC. Lithium batteries: To the limits of lithium. Nature 2015;526:S93–5. doi:10.1038/526S93a.
  • [11] Lecocq A, Eshetu GG, Grugeon S, Martin N, Laruelle S, Marlair G. Scenario-based prediction of Li-ion batteries fire-induced toxicity. Journal of Power Sources 2016;316:197–206. doi:10.1016/j.jpowsour.2016.02.090.
  • [12] Schiemann M, Bergthorson J, Fischer P, Scherer V, Taroata D, Schmid G. A review on lithium combustion. Applied Energy 2016;162:948–65. doi:10.1016/j.apenergy.2015.10.172.
  • [13] H. Cui and G. Xiao, “Fuel-Efficiency Technology Trend Assessment for LDVs in China: Hybrids and Electrification,” The International Council on Clean Transportation, 2018.
  • [14] Hao M, Li J, Park S, Moura S, Dames C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nature Energy 2018;3:899–906. doi:10.1038/s41560-018-0243-8.
  • [15] Blum A, Long RT. Full-scale Fire Tests of Electric Drive Vehicle Batteries. SAE International Journal of Passenger Cars - Mechanical Systems 2015;8:565–72. doi:10.4271/2015-01-1383.
  • [16] Justen R, Schöneburg R. Crash Safety of Hybrid and Battery Electric Vehicles. 22nd Enhanced Safety of Vehicles Conference, Washington: 2011.
  • [17] Wisch M, J. Ott RT, Léost Y, Abert M, Yao J. Recommendations and Guidelines for Battery Crash Safety and Post-Crash Handling. EVERSAFE 2014.
  • [18] Fairley P. Speed bumps ahead for electric-vehicle charging. IEEE Spectrum 2010;47:13–4. doi:10.1109/MSPEC.2010.5372476.
  • [19] Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy 2017;2. doi:10.1038/nenergy.2017.12.
  • [20] Drysdale D. An Introduction to Fire Dynamics. 3rd ed. Chichester, UK: John Wiley & Sons, Ltd; 2011. doi:10.1002/9781119975465.
  • [21] Larsson F. Lithium-ion Battery Safety-Assessment by Abuse Testing, Fluoride Gas Emissions and Fire Propagation. Chalmers University of Technology, 2017.
  • [22] Said AO, Lee C, Stoliarov SI, Marshall AW. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Applied Energy 2019;248:415–28. doi:10.1016/j.apenergy.2019.04.141.
  • [23] Kong L, Li C, Jiang J, Pecht MG. Li-ion battery fire hazards and safety strategies. Energies 2018;11:1–11. doi:10.3390/en11092191.
  • [24] G. E. Blomgren, “The Development and Future of Lithium Ion Batteries,” Journal of the Electrochemical Society, vol. 164, no. 1, pp. A5019-A5025, 2017
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Articles
Authors

Hüseyin Alyar

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Alyar, H. (2022). Elektrikli Otomobillerin Yapısı ve Yangın Riskleri. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, 10(1), 1-8. https://doi.org/10.52702/fce.1057432
AMA Alyar H. Elektrikli Otomobillerin Yapısı ve Yangın Riskleri. FCE Journal. December 2022;10(1):1-8. doi:10.52702/fce.1057432
Chicago Alyar, Hüseyin. “Elektrikli Otomobillerin Yapısı Ve Yangın Riskleri”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 10, no. 1 (December 2022): 1-8. https://doi.org/10.52702/fce.1057432.
EndNote Alyar H (December 1, 2022) Elektrikli Otomobillerin Yapısı ve Yangın Riskleri. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 10 1 1–8.
IEEE H. Alyar, “Elektrikli Otomobillerin Yapısı ve Yangın Riskleri”, FCE Journal, vol. 10, no. 1, pp. 1–8, 2022, doi: 10.52702/fce.1057432.
ISNAD Alyar, Hüseyin. “Elektrikli Otomobillerin Yapısı Ve Yangın Riskleri”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 10/1 (December 2022), 1-8. https://doi.org/10.52702/fce.1057432.
JAMA Alyar H. Elektrikli Otomobillerin Yapısı ve Yangın Riskleri. FCE Journal. 2022;10:1–8.
MLA Alyar, Hüseyin. “Elektrikli Otomobillerin Yapısı Ve Yangın Riskleri”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, vol. 10, no. 1, 2022, pp. 1-8, doi:10.52702/fce.1057432.
Vancouver Alyar H. Elektrikli Otomobillerin Yapısı ve Yangın Riskleri. FCE Journal. 2022;10(1):1-8.

Cited By