Research Article
BibTex RIS Cite

Microwave Assisted Biomass-Based Electrode Material Production for Supercapacitor Applications

Year 2023, Volume: 11 Issue: 1, 67 - 76, 31.12.2023
https://doi.org/10.52702/fce.1245394

Abstract

Supercapacitors have become the focus of attention in the energy storage market due to their high power densities, fast charge/discharge rate, advantages of closing the power-energy gap, long cycle life, simple working principles, safe operation and low maintenance costs. Recently, researches on biomass-derived carbon electrode materials have gained momentum especially due to their cheap, environmentally friendly, advanced porous structure and high specific capacity. In this study, supercapacitor electrodes were successfully produced by applying microwave heating at various times and at different powers to Quercus infectoria biomass, which was converted to activated carbon by KOH activation and carbonization method. The properties of the electrodes were determined using chemical characterizations and electrochemical methods. While the capacitance value of the non-microwaved electrode was 89 F/g at 1 A/g current density, the capacitance value of the MAQ-4 electrode was calculated as 283 F/g. The relationship between capacitance value and microwave power exhibited a convex parabola curve characteristic. As the application time of microwave energy increased, the capacitance value of the electrodes increased. The applied microwave power generally increased the stability of the electrodes. From long cycles for stability testing, only a 5.62% reduction in capacitance value of the MAQ-4 electrode was observed. In light of the results obtained, the produced electrode materials are promising both in the reuse of organic wastes and in meeting the energy storage need, thanks to their advantages such as good capacitance, high energy, high power density, low cost and environmental friendliness.

References

  • [1] Ibrahim, H., A. Ilinca, and J. Perron, Energy storage systems—Characteristics and comparisons. Renewable and sustainable energy reviews, 2008. 12(5): p. 1221-1250.
  • [2] Yan, J., et al., Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014. 4(4): p. 1300816.
  • [3] Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
  • [4] Libich, J., et al., Supercapacitors: Properties and applications. Journal of Energy Storage, 2018. 17: p. 224-227.
  • [5] Bi, Z., et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of materials chemistry a, 2019. 7(27): p. 16028-16045.
  • [6] Jian, X., et al., Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electr. Eng, 2016. 4(2): p. 75-87.
  • [7] Simon, P. and Y. Gogotsi, Capacitive energy storage in nanostructured carbon–electrolyte systems. Accounts of chemical research, 2013. 46(5): p. 1094-1103.
  • [8] Zhang, Y., et al., Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy, 2009. 34(11): p. 4889-4899.
  • [9] Beguin, F. and E. Frackowiak, Carbons for electrochemical energy storage and conversion systems. 2009: Crc Press.
  • [10] Geng, P., et al., Transition metal sulfides based on graphene for electrochemical energy storage. Advanced Energy Materials, 2018. 8(15): p. 1703259.
  • [11] Zhang, L.L., Y. Gu, and X. Zhao, Advanced porous carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2013. 1(33): p. 9395-9408.
  • [12] Lu, H. and X. Zhao, Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy & Fuels, 2017. 1(6): p. 1265-1281.
  • [13] Wei, L. and G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 2012. 1(4): p. 552-565.
  • [14] Jain, A., et al., Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific reports, 2013. 3(1): p. 1-6.
  • [15] Chen, M., et al., Preparation of activated carbon from cotton stalk and its application in supercapacitor. Journal of solid state electrochemistry, 2013. 17(4): p. 1005-1012.
  • [16] Akdemir, M., Electrochemical performance of Quercus infectoria as a supercapacitor carbon electrode material. International Journal of Energy Research, 2022. 46(6): p. 7722-7731.
  • [17] Li, Y., Wei, Z., Zhan, Z., Pei, J., Zhao, C., Xu, W., ... & Pang, S. (2024). Scale-up biomass strategy to macro-microporous nitrogen-doped carbon aerogels for ionic liquid supercapacitors with high efficiency. Journal of Energy Storage, 76, 109778.
  • [18] Tufan, A., T.A. Hansu, and M. Akdemir, Production of a novel supercapacitor electrode material from Rheum ribes and its application. Bulletin of Materials Science, 2022. 45(3): p. 1-9.
  • [19] Shen, S., Ma, D., Ouyang, K., Chen, Y., Yang, M., Wang, Y., ... & Zhang, P. (2023). An In Situ Electrochemical Amorphization Electrode Enables High‐Power High‐Cryogenic Capacity Aqueous Zinc‐Ion Batteries. Advanced Functional Materials, 2304255.
  • [20] Kim, W., et al., Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors. Journal of Power Sources, 2010. 195(7): p. 2125-2129.
  • [21] Bora, M., et al., Highly scalable and environment-friendly conversion of low-grade coal to activated carbon for use as electrode material in symmetric supercapacitor. Fuel, 2022. 329: p. 125385.
  • [22] Wang, H., M. Wang, and J. Wang, Nickel silicate hydroxide on hierarchically porous carbon derived from rice husks as high-performance electrode material for supercapacitors. International Journal of Hydrogen Energy, 2021. 46(71): p. 35351-35364.
  • [23] Irfan, M., et al., Value-added apple-derived carbonaceous aerogel for robust supercapacitor. International Journal of Hydrogen Energy, 2021. 46(60): p. 30727-30738.
  • [24] Özarslan, S., et al., A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 2021. 305: p. 121578.
  • [25] Fan, S., et al., High-density oxygen-enriched graphene hydrogels for symmetric supercapacitors with ultrahigh gravimetric and volumetric performance. International Journal of Hydrogen Energy, 2021. 46(80): p. 39969-39982.
  • [26] Li, L., et al., Honeycomb-like N/O self-doped hierarchical porous carbons derived from low-rank coal and its derivatives for high-performance supercapacitor. Fuel, 2023. 331: p. 125658.
  • [27] Cai, J., et al., High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS applied materials & interfaces, 2015. 7(27): p. 14946-14953.
  • [28] Cheng, Q., et al., Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Physical Chemistry Chemical Physics, 2011. 13(39): p. 17615-17624.
  • [29] Wu, Y., et al., Green and facile synthesis of porous carbon spheres from waste solution for high performance all-solid-state symmetric supercapacitors. International Journal of Hydrogen Energy, 2021. 46(64): p. 32373-32384.

Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi

Year 2023, Volume: 11 Issue: 1, 67 - 76, 31.12.2023
https://doi.org/10.52702/fce.1245394

Abstract

Süper kapasitörler, yüksek güç yoğunlukları, hızlı şarj/deşarj oranı, güç-enerji farkını kapatma avantajları, uzun çevrim ömürleri, basit çalışma ilkeleri, güvenli çalışmaları ve düşük bakım maliyetleri nedeniyle enerji depolama pazarında ilgi odağı haline gelmiştir. Son zamanlarda, özellikle ucuz, çevre dostu, gelişmiş gözenekli yapıda, yüksek özgül kapasiteli gibi özelliklerinden dolayı biyokütle türevi karbon elektrot malzemeler üzerine yapılan araştırmalar ivme kazanmıştır. Bu çalışmada, KOH aktivasyonu ve karbonizasyon yöntemiyle aktif karbona dönüştürülen Meşe mazısı biyokütlesine çeşitli sürelerde ve farklı güçlerde mikrodalga ısıtma uygulanarak başarılı bir şekilde süperkapasitör elektrotları üretilmiştir. Kimyasal karakterizasyonlar ve elektrokimyasal yöntemler kullnılarak elektrotların özellikleri belirlenmiştir. Mikrodalga uygulanmamış elektrodun kapasitans değeri 1 A/g akım yoğunluğunda 89 F/g iken MAQ-4 elektrodunun kapasitans değeri 283 F/g olarak hesaplanmıştır. Kapasitans değeri-Mikrodalga gücü arasındaki ilişki konveks bir parabol eğri özelliği sergilemiştir. Mikrodalga enerjisinin uygulanma süresi arttıkça elektrotların kapasitans değeri arttmıştır. Mikrodalga gücü arttıkça farklı akım yoğunluklarındaki kapasitans değerleri arasındaki farkı oldukça azaltmıştır. Uygulanan mikrodalga gücü genel olarak elektrotların kararlılığını artırmıştır. Kararlılık testi için yapılan uzun döngülerden MAQ-4 elektrodunun kapasitans değerinde yalnızca %5,62’lik bir azalma görülmüştür. Elde edilen sonuçlar ışığında, üretilen elektrot malzemeleri iyi kapasitans, yüksek enerji, yüksek güç yoğunluğu, düşük maliyet ve çevre dostu olma gibi avantajları sayesinde hem organik atıkların yeniden kullanımında hem de enerji depolama ihtiyacının karşılanmasında gelecek vaat etmektedir.

Thanks

Bu makale 8-11 Eylül 2022 tarihlerinde düzenlenen 16. Uluslararası Yakma Sempozyumu'nda (INCOS 2022) bildiri olarak sunulmuştur.

References

  • [1] Ibrahim, H., A. Ilinca, and J. Perron, Energy storage systems—Characteristics and comparisons. Renewable and sustainable energy reviews, 2008. 12(5): p. 1221-1250.
  • [2] Yan, J., et al., Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014. 4(4): p. 1300816.
  • [3] Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
  • [4] Libich, J., et al., Supercapacitors: Properties and applications. Journal of Energy Storage, 2018. 17: p. 224-227.
  • [5] Bi, Z., et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of materials chemistry a, 2019. 7(27): p. 16028-16045.
  • [6] Jian, X., et al., Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electr. Eng, 2016. 4(2): p. 75-87.
  • [7] Simon, P. and Y. Gogotsi, Capacitive energy storage in nanostructured carbon–electrolyte systems. Accounts of chemical research, 2013. 46(5): p. 1094-1103.
  • [8] Zhang, Y., et al., Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy, 2009. 34(11): p. 4889-4899.
  • [9] Beguin, F. and E. Frackowiak, Carbons for electrochemical energy storage and conversion systems. 2009: Crc Press.
  • [10] Geng, P., et al., Transition metal sulfides based on graphene for electrochemical energy storage. Advanced Energy Materials, 2018. 8(15): p. 1703259.
  • [11] Zhang, L.L., Y. Gu, and X. Zhao, Advanced porous carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2013. 1(33): p. 9395-9408.
  • [12] Lu, H. and X. Zhao, Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy & Fuels, 2017. 1(6): p. 1265-1281.
  • [13] Wei, L. and G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 2012. 1(4): p. 552-565.
  • [14] Jain, A., et al., Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific reports, 2013. 3(1): p. 1-6.
  • [15] Chen, M., et al., Preparation of activated carbon from cotton stalk and its application in supercapacitor. Journal of solid state electrochemistry, 2013. 17(4): p. 1005-1012.
  • [16] Akdemir, M., Electrochemical performance of Quercus infectoria as a supercapacitor carbon electrode material. International Journal of Energy Research, 2022. 46(6): p. 7722-7731.
  • [17] Li, Y., Wei, Z., Zhan, Z., Pei, J., Zhao, C., Xu, W., ... & Pang, S. (2024). Scale-up biomass strategy to macro-microporous nitrogen-doped carbon aerogels for ionic liquid supercapacitors with high efficiency. Journal of Energy Storage, 76, 109778.
  • [18] Tufan, A., T.A. Hansu, and M. Akdemir, Production of a novel supercapacitor electrode material from Rheum ribes and its application. Bulletin of Materials Science, 2022. 45(3): p. 1-9.
  • [19] Shen, S., Ma, D., Ouyang, K., Chen, Y., Yang, M., Wang, Y., ... & Zhang, P. (2023). An In Situ Electrochemical Amorphization Electrode Enables High‐Power High‐Cryogenic Capacity Aqueous Zinc‐Ion Batteries. Advanced Functional Materials, 2304255.
  • [20] Kim, W., et al., Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors. Journal of Power Sources, 2010. 195(7): p. 2125-2129.
  • [21] Bora, M., et al., Highly scalable and environment-friendly conversion of low-grade coal to activated carbon for use as electrode material in symmetric supercapacitor. Fuel, 2022. 329: p. 125385.
  • [22] Wang, H., M. Wang, and J. Wang, Nickel silicate hydroxide on hierarchically porous carbon derived from rice husks as high-performance electrode material for supercapacitors. International Journal of Hydrogen Energy, 2021. 46(71): p. 35351-35364.
  • [23] Irfan, M., et al., Value-added apple-derived carbonaceous aerogel for robust supercapacitor. International Journal of Hydrogen Energy, 2021. 46(60): p. 30727-30738.
  • [24] Özarslan, S., et al., A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 2021. 305: p. 121578.
  • [25] Fan, S., et al., High-density oxygen-enriched graphene hydrogels for symmetric supercapacitors with ultrahigh gravimetric and volumetric performance. International Journal of Hydrogen Energy, 2021. 46(80): p. 39969-39982.
  • [26] Li, L., et al., Honeycomb-like N/O self-doped hierarchical porous carbons derived from low-rank coal and its derivatives for high-performance supercapacitor. Fuel, 2023. 331: p. 125658.
  • [27] Cai, J., et al., High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS applied materials & interfaces, 2015. 7(27): p. 14946-14953.
  • [28] Cheng, Q., et al., Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Physical Chemistry Chemical Physics, 2011. 13(39): p. 17615-17624.
  • [29] Wu, Y., et al., Green and facile synthesis of porous carbon spheres from waste solution for high performance all-solid-state symmetric supercapacitors. International Journal of Hydrogen Energy, 2021. 46(64): p. 32373-32384.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Musa Altınışık

Tülin Avcı Hansu 0000-0001-5441-4696

Murat Akdemir 0000-0001-9235-1913

Early Pub Date December 28, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Altınışık, M., Avcı Hansu, T., & Akdemir, M. (2023). Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, 11(1), 67-76. https://doi.org/10.52702/fce.1245394
AMA Altınışık M, Avcı Hansu T, Akdemir M. Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi. FCE Journal. December 2023;11(1):67-76. doi:10.52702/fce.1245394
Chicago Altınışık, Musa, Tülin Avcı Hansu, and Murat Akdemir. “Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 11, no. 1 (December 2023): 67-76. https://doi.org/10.52702/fce.1245394.
EndNote Altınışık M, Avcı Hansu T, Akdemir M (December 1, 2023) Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 11 1 67–76.
IEEE M. Altınışık, T. Avcı Hansu, and M. Akdemir, “Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi”, FCE Journal, vol. 11, no. 1, pp. 67–76, 2023, doi: 10.52702/fce.1245394.
ISNAD Altınışık, Musa et al. “Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 11/1 (December 2023), 67-76. https://doi.org/10.52702/fce.1245394.
JAMA Altınışık M, Avcı Hansu T, Akdemir M. Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi. FCE Journal. 2023;11:67–76.
MLA Altınışık, Musa et al. “Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, vol. 11, no. 1, 2023, pp. 67-76, doi:10.52702/fce.1245394.
Vancouver Altınışık M, Avcı Hansu T, Akdemir M. Süper Kapasitör Uygulamaları için Mikrodalga Destekli Biyokütle Tabanlı Elektrot Malzemesi Üretimi. FCE Journal. 2023;11(1):67-76.