Research Article
BibTex RIS Cite

Strongly Far Proximity and Hyperspace Topology

Year 2020, Volume: 1 Issue: 1, 23 - 29, 31.01.2020

Abstract

This paper introduces strongly far in proximity spaces.
Usually, when we talk about proximities, we mean \textit{Efremovi\v{c} proximities}. Nearness expressions are very useful and also represent a powerful tool because of the relation existing among \textit{Efremovi\v c proximities}, \textit{Weil uniformities} and $\mbox{T}_2$ compactifications. But sometimes \textit{Efremovi\v c proximities} are too strong. So we want to distinguish between a weaker and a stronger forms of proximity. For this reason, we consider at first \textit{Lodato proximity} $\delta$ and then, by this, we define a stronger proximity by using the Efremovi\v{c} property related to proximity.

Supporting Institution

Natural Sciences \& Engineering Research Council of Canada (NSERC)

Project Number

185986

Thanks

Many thanks for the invitation to submit this paper.

References

  • Di Concilio A., Uniformities, hyperspaces, and normality, Monatsh. Math., 107(3), 303–308, 1989.
  • Di Concilio A., Proximity: A powerful tool in extension theory, function spaces, hyperspaces, boolen algebras and point-free geometry, Beyond Topology, F. Mynard, E. Pearl, Eds., Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 486, 89–114, 2009.
  • Di Concilio A., Action on hyperspaces, Topology Proc., 41, 85–98, 2013.
  • Di Concilio A., Naimpally S.A., Proximal set-open topologies, Boll. Unione Mat. Ital. Sez. B Artic Ric. Mat., 8(1), 173–191, 2000.
  • Di Concilio A., Proximal set-open topologies on partial maps, Acta Math. Hungar., 88(3), 227–237, 2000.
  • Di Maio G., Naimpally S.A., Comparison of hypertopologies, Rend. Istit. Mat. Univ. Trieste, 22(1–2), 140–161, 1990.
  • Efremovic̆V.A., Infinitesimal Spaces (Russian), Dokl. Akad. Nauk SSSR, 76, 341–343, 1951.
  • Fell J.M.G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13, 472–476, 1962.
  • Lodato M.W., On topologically induced generalized proximity relations, Ph.D. Thesis, Rutgers University, 42, 1962.
  • Lodato M.W., On topologically induced generalized proximity relations I, Proc. Amer. Math. Soc., 15, 417–422, 1964.
  • Lodato M.W., On topologically induced generalized proximity relations II, Pacific J. Math., 17, 131–135, 1966.
  • Naimpally S.A., Warrack B.D., Proximity Spaces, Cambridge University Press, Cambridge Tract in Mathematics and Mathematical Physics 59, Cambridge, UK, 1970.
  • Naimpally S.A., All hypertopologies are hit-and-miss, App. Gen. Topology, 3, 197–199, 2002.
  • Naimpally S.A., Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, Munich, Germany, 2009.
  • Peters J.F., Proximal Voronoï regions, convex polygons, & Leader uniform topology, Advances in Math., (4)1, 1–5, 2015.
  • Peters J.F., Visibility in proximal Delaunay meshes and strongly near Wallman proximity, Advances in Math., (4)1, 41–47, 2015.
  • Peters J.F., Naimpally S.A., Applications of near sets, Notices Amer. Math. Soc., 59(4), 536–542, 2012.
  • Peters J.F., Öztürk M.A., Uçkun M., Klee-Phelps convex groupoids, Math. Slovaca, 67(2), 397–400, 2017.
  • Vietoris L., Stetige mengen, Monatsch. Math. Phys., 31(1), 173–204, 1921.
  • Vietoris L., Bereiche zweiter ordnung, Monatsch. Math. Phys., 32(1), 258–280, 1922.
  • Vietoris L., Kontinua zweiter ordnung, Monatsch. Math. Phys., 33(1), 49–62, 1923.
  • Vietoris L., Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann., 97(1), 454–472, 1927.
Year 2020, Volume: 1 Issue: 1, 23 - 29, 31.01.2020

Abstract

Project Number

185986

References

  • Di Concilio A., Uniformities, hyperspaces, and normality, Monatsh. Math., 107(3), 303–308, 1989.
  • Di Concilio A., Proximity: A powerful tool in extension theory, function spaces, hyperspaces, boolen algebras and point-free geometry, Beyond Topology, F. Mynard, E. Pearl, Eds., Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 486, 89–114, 2009.
  • Di Concilio A., Action on hyperspaces, Topology Proc., 41, 85–98, 2013.
  • Di Concilio A., Naimpally S.A., Proximal set-open topologies, Boll. Unione Mat. Ital. Sez. B Artic Ric. Mat., 8(1), 173–191, 2000.
  • Di Concilio A., Proximal set-open topologies on partial maps, Acta Math. Hungar., 88(3), 227–237, 2000.
  • Di Maio G., Naimpally S.A., Comparison of hypertopologies, Rend. Istit. Mat. Univ. Trieste, 22(1–2), 140–161, 1990.
  • Efremovic̆V.A., Infinitesimal Spaces (Russian), Dokl. Akad. Nauk SSSR, 76, 341–343, 1951.
  • Fell J.M.G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13, 472–476, 1962.
  • Lodato M.W., On topologically induced generalized proximity relations, Ph.D. Thesis, Rutgers University, 42, 1962.
  • Lodato M.W., On topologically induced generalized proximity relations I, Proc. Amer. Math. Soc., 15, 417–422, 1964.
  • Lodato M.W., On topologically induced generalized proximity relations II, Pacific J. Math., 17, 131–135, 1966.
  • Naimpally S.A., Warrack B.D., Proximity Spaces, Cambridge University Press, Cambridge Tract in Mathematics and Mathematical Physics 59, Cambridge, UK, 1970.
  • Naimpally S.A., All hypertopologies are hit-and-miss, App. Gen. Topology, 3, 197–199, 2002.
  • Naimpally S.A., Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, Munich, Germany, 2009.
  • Peters J.F., Proximal Voronoï regions, convex polygons, & Leader uniform topology, Advances in Math., (4)1, 1–5, 2015.
  • Peters J.F., Visibility in proximal Delaunay meshes and strongly near Wallman proximity, Advances in Math., (4)1, 41–47, 2015.
  • Peters J.F., Naimpally S.A., Applications of near sets, Notices Amer. Math. Soc., 59(4), 536–542, 2012.
  • Peters J.F., Öztürk M.A., Uçkun M., Klee-Phelps convex groupoids, Math. Slovaca, 67(2), 397–400, 2017.
  • Vietoris L., Stetige mengen, Monatsch. Math. Phys., 31(1), 173–204, 1921.
  • Vietoris L., Bereiche zweiter ordnung, Monatsch. Math. Phys., 32(1), 258–280, 1922.
  • Vietoris L., Kontinua zweiter ordnung, Monatsch. Math. Phys., 33(1), 49–62, 1923.
  • Vietoris L., Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann., 97(1), 454–472, 1927.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

James F. Peters 0000-0002-1026-4638

Clara Guadagni

Project Number 185986
Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1

Cite

19113 FCMS is licensed under the Creative Commons Attribution 4.0 International Public License.