Research Article
BibTex RIS Cite
Year 2020, Volume: 1 Issue: 2, 95 - 107, 30.07.2020

Abstract

References

  • Cappelletti-Montano B., Erken Kupeli I., Murathan C., Nullity conditions in paracontact geometry, Dif. Geom. Appl., 30, 665-693, 2012.
  • Cappelletti-Montano B., Di Terlizzi L., Geometric structures associated to a contact metric (k,μ)-space, Pasific J. Math., 246(2), 257-292, 2010.
  • Cartan E., Sur une classes remarquable d'espaces de Riemann, Bull. Soc. Math. France, 54, 214-264, 1926.
  • Erken Kupeli I., Murathan C., A study of three-dimensional paracontact (k, μ, v)-spaces, Int. J. Geomet. Meth. Mod. Phys., 14(7), 2017.
  • Kaneyuki S., Williams F.L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99, 173-187, 1985.
  • Mandal K., De U.C., Paracontact metric (k,μ)-spaces satisfying certain curvature conditions, Kyungpook Math. J., 59(1) 163-174, 2019.
  • Shirokov P.A., Collected Works of Geometry, Kazan University Press, 1966.
  • Soos G., Uber die geodatischen Abbildungen von Riemannaschen Raumen auf projektiv symmetrische Riemannsche Raume, Acta. Math. Acad. Sci. Hungar. Tom., 9, 359-361, 1958.
  • Szab'o Z.I., Structure theorems on Riemannian spaces satisfying R(X,Y).R=0, the local version, J. Dif. Geometry, 17, 531-582, 1982.
  • Yano K., Bochner S., Curvature and Betti Numbers, Annals of Mathematics Studies, 32, Princeton University Press, 1953.
  • Yıldız A., De U.C., A classification of (k,μ)-contact metric manifolds, Commun. Korean Math. Soc., 27, 327-339, 2012.
  • Yıldız A., De U.C., Certain semisymmetry curvature conditions on paracontact metric (k,μ)-manifolds, Math. Sci. Appl. E-Notes, 8(1), 1-10, 2020.
  • Zamkovoy S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36, 37-60, 2009.
  • Zamkovoy S., Tzanov V., Non-existence of at paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform., 100, 27-34, 2011.

Some Semisymmetry Curvature Conditions on Paracontact Metric (k,\mu)-Manifolds

Year 2020, Volume: 1 Issue: 2, 95 - 107, 30.07.2020

Abstract

The aim of the article is to study paracontact metric $(k,\mu)$-manifolds satisfying some semisymmetry curvature conditions. Also, we show that if a paracontact metric $(k,\mu)$-manifold is Ricci pseudo-symmetric then it is an Einstein manifold provided $k\neq 1$.                                                                                                                                                                                                                                                                                                                                                                         

References

  • Cappelletti-Montano B., Erken Kupeli I., Murathan C., Nullity conditions in paracontact geometry, Dif. Geom. Appl., 30, 665-693, 2012.
  • Cappelletti-Montano B., Di Terlizzi L., Geometric structures associated to a contact metric (k,μ)-space, Pasific J. Math., 246(2), 257-292, 2010.
  • Cartan E., Sur une classes remarquable d'espaces de Riemann, Bull. Soc. Math. France, 54, 214-264, 1926.
  • Erken Kupeli I., Murathan C., A study of three-dimensional paracontact (k, μ, v)-spaces, Int. J. Geomet. Meth. Mod. Phys., 14(7), 2017.
  • Kaneyuki S., Williams F.L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99, 173-187, 1985.
  • Mandal K., De U.C., Paracontact metric (k,μ)-spaces satisfying certain curvature conditions, Kyungpook Math. J., 59(1) 163-174, 2019.
  • Shirokov P.A., Collected Works of Geometry, Kazan University Press, 1966.
  • Soos G., Uber die geodatischen Abbildungen von Riemannaschen Raumen auf projektiv symmetrische Riemannsche Raume, Acta. Math. Acad. Sci. Hungar. Tom., 9, 359-361, 1958.
  • Szab'o Z.I., Structure theorems on Riemannian spaces satisfying R(X,Y).R=0, the local version, J. Dif. Geometry, 17, 531-582, 1982.
  • Yano K., Bochner S., Curvature and Betti Numbers, Annals of Mathematics Studies, 32, Princeton University Press, 1953.
  • Yıldız A., De U.C., A classification of (k,μ)-contact metric manifolds, Commun. Korean Math. Soc., 27, 327-339, 2012.
  • Yıldız A., De U.C., Certain semisymmetry curvature conditions on paracontact metric (k,μ)-manifolds, Math. Sci. Appl. E-Notes, 8(1), 1-10, 2020.
  • Zamkovoy S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36, 37-60, 2009.
  • Zamkovoy S., Tzanov V., Non-existence of at paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform., 100, 27-34, 2011.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ahmet Yıldız 0000-0002-9799-1781

Publication Date July 30, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

19113 FCMS is licensed under the Creative Commons Attribution 4.0 International Public License.