On non-Newtonian Helices in Multiplicative Euclidean Space
Year 2025,
Volume: 6 Issue: 2, 196 - 217, 30.07.2025
Aykut Has
,
Beyhan Yılmaz
Abstract
In this article, spherical indicatrices of a curve and helices are re-examined using both the algebraic structure and the geometric structure of non-Newtonian (multiplicative) Euclidean space. Indicatrices of a multiplicative curve on the multiplicative sphere in multiplicative space are obtained. In addition, multiplicative general helix, multiplicative slant helix and multiplicative clad and multiplicative g-clad helix characterizations are provided. Finally, examples and drawings are given.
Thanks
We would like to thank the esteemed editors and authors for their contributions to the article.
I would also like to thank TÜBITAK, a scholarship holder, for supporting me in every field.
References
-
Aniszewska D., Multiplicative Runge-Kutta methods, Nonlinear Dynamics, 50, 262-272, 2007.
-
Aydın M.E., Has A., Yılmaz B., A non-Newtonian approach in differential geometry of curves:
Multiplicative rectifying curves, Bulletin of the Korean Mathematical Society, 61(3), 849-866, 2024.
-
Aydın M.E., Has A., Yılmaz B., Multiplicative rectifying submanifolds of multiplicative Euclidean
space, Mathematical Methods in the Applied Sciences, 48(1), 329-339, 2025.
-
Bashirov A.E., Kurpınar E.M., Özyapıcı A., Multiplicative calculus and its applications, Journal of
Mathematical Analysis and Applications, 337, 36-48, 2008.
-
Bashirov A.E., Mısırlı E., Tandoğdu Y., Özyapıcı A., On modeling with multiplicative differential
equations, Applied Mathematics-A Journal of Chinese Universities, 26(4), 425-438, 2011.
-
Bashirov A.E., Rıza M., On complex multiplicative differentiation, TWMS Journal of Applied and
Engineering Mathematics, 1(1), 75-85, 2011.
-
Boruah K., Hazarika B., Some basic properties of bigeometric calculus and its applications in numerical
analysis, Afrika Matematica, 32, 211-227, 2021.
-
Ceyhan H., Özdemir Z., Nurkan S.K., Gürgil I., A non-Newtonian approach to geometric phase
through optic fiber via multiplicative quaternions, Revista Mexicana de Física, 70(6), 061301, 2024.
-
Foley J.D., Dam A.V., Feiner S.K., Hughes J.F., Computer Graphics: Principles and Practice,
Addison-Wesley Professional Publishing, 2013.
-
Georgiev S.G., Multiplicative Differential Geometry, Chapman and Hall/CRC, 2022.
-
Georgiev S.G., Zennir K., Multiplicative Differential Calculus, Chapman and Hall/CRC., 2022.
-
Georgiev S.G., Zennir K., Boukarou A., Multiplicative Analytic Geometry, Chapman and Hall/CRC,
2022.
-
Göktaş S., Kemaloglu H., Yılmaz E., Multiplicative conformable fractional Dirac system, Turkish
Journal of Mathematics, 46, 973–990, 2022.
-
Grossman M., Bigeometric Calculus: A System with a Scale-Free Derivative, Archimedes Foundation,
1983.
-
Grossman M., Katz R., Non-Newtonian Calculus, Lee Press, 1972.
-
Gülsen T., Yılmaz E., Göktaş S., Multiplicative Dirac system, Kuwait Journal of Science, 49(3), 1-11,
2022.
-
Has A., Yılmaz B., A non-Newtonian conics in multiplicative analytic geometry, Turkish Journal of
Mathematics, 48(5), 976-994, 2024.
-
Has A., Yılmaz B., A non-Newtonian magnetic curves in multiplicative Riemann manifolds, Physica
Scripta, 99(4), 045239, 2024.
-
Has A., Yılmaz B., Yıldırım H., A non-Newtonian perspective on multiplicative Lorentz–Minkowski
space L^3, Mathematical Methods in the Applied Sciences, 47(18), 13875-13888, 2024.
-
Izumuya S., Takeuchi N., New special curves and developable surfaces, Turkish Journal of Mathematics,
28, 153-163, 2024.
-
Kaya S., Ateş O., Gök I., Yaylı Y., Timelike clad helices and developable surfaces in Minkowski
3-space, Rendiconti del Circolo Matematico di Palermo Series 2, 68, 259–273, 2019.
-
Mak M., Framed clad helices in Euclidean 3-space, Filomat, 37(28), 9627-9640, 2023.
-
Nurkan S.K., Gürgil I., Karacan M.K., Vector properties of geometric calculus, Mathematical
Methods in the Applied Sciences, 46(17), 17672-17691, 2023.
-
Rybaczuk M., Stoppel P., The fractal growth of fatigue defects in materials, International Journal of
Fracture, 103, 71-94, 2000.
-
Rybaczuk M., Zielinski W., The concept of physical and fractal dimension I. The projective dimensions,
Chaos, Solitons and Fractals, 12(13), 2517-2535, 2001.
-
Sadraey M.H., Aircraft Design: A Systems Engineering Approach, Wiley, 2013.
-
Stanley D., A multiplicative calculus, Primus, 9(4), 310-326, 1999.
-
Takahashi T., Takeuchi N., Clad helices and developable surface, Tokyo Gakugei University Bulletin;
Natural Science, 66, 1-9, 2014.
-
Uzer A., Multiplicative type complex calculus as an alternative to the classical calculus, Computers
and Mathematics with Applications, 60, 2725-2737, 2010.
-
Volterra V., Hostinsky B., Operations Infinitesimales Lineares, Herman, 1938.
-
Waseem M., Noor N.A., Shah F.A., Noor K.I., An efficient technique to solve nonlinear equations
using multiplicative calculus, Turkish Journal of Mathematics, 42, 679-691, 2018.
-
Watson J.D., Baker T., Stephen P.B., Gann A., Michael L., et al., Molecular Biology of the Gene,
Pearson Publishing, 2013.
-
Yalçın N., Çelik E., Solution of multiplicative homogeneous linear differential equations with constant
exponentials, New Trends in Mathematical Sciences, 6(2), 58-67, 2018.
-
Yazici M., Selvitopi H., Numerical methods for the multiplicative partial differential equations, Open
Mathematics, 15, 1344-1350, 2017.
-
Yılmaz B., Has A., New approach to slant helix, International Electronic Journal of Geometry, 12,
111-115, 2019.
Year 2025,
Volume: 6 Issue: 2, 196 - 217, 30.07.2025
Aykut Has
,
Beyhan Yılmaz
References
-
Aniszewska D., Multiplicative Runge-Kutta methods, Nonlinear Dynamics, 50, 262-272, 2007.
-
Aydın M.E., Has A., Yılmaz B., A non-Newtonian approach in differential geometry of curves:
Multiplicative rectifying curves, Bulletin of the Korean Mathematical Society, 61(3), 849-866, 2024.
-
Aydın M.E., Has A., Yılmaz B., Multiplicative rectifying submanifolds of multiplicative Euclidean
space, Mathematical Methods in the Applied Sciences, 48(1), 329-339, 2025.
-
Bashirov A.E., Kurpınar E.M., Özyapıcı A., Multiplicative calculus and its applications, Journal of
Mathematical Analysis and Applications, 337, 36-48, 2008.
-
Bashirov A.E., Mısırlı E., Tandoğdu Y., Özyapıcı A., On modeling with multiplicative differential
equations, Applied Mathematics-A Journal of Chinese Universities, 26(4), 425-438, 2011.
-
Bashirov A.E., Rıza M., On complex multiplicative differentiation, TWMS Journal of Applied and
Engineering Mathematics, 1(1), 75-85, 2011.
-
Boruah K., Hazarika B., Some basic properties of bigeometric calculus and its applications in numerical
analysis, Afrika Matematica, 32, 211-227, 2021.
-
Ceyhan H., Özdemir Z., Nurkan S.K., Gürgil I., A non-Newtonian approach to geometric phase
through optic fiber via multiplicative quaternions, Revista Mexicana de Física, 70(6), 061301, 2024.
-
Foley J.D., Dam A.V., Feiner S.K., Hughes J.F., Computer Graphics: Principles and Practice,
Addison-Wesley Professional Publishing, 2013.
-
Georgiev S.G., Multiplicative Differential Geometry, Chapman and Hall/CRC, 2022.
-
Georgiev S.G., Zennir K., Multiplicative Differential Calculus, Chapman and Hall/CRC., 2022.
-
Georgiev S.G., Zennir K., Boukarou A., Multiplicative Analytic Geometry, Chapman and Hall/CRC,
2022.
-
Göktaş S., Kemaloglu H., Yılmaz E., Multiplicative conformable fractional Dirac system, Turkish
Journal of Mathematics, 46, 973–990, 2022.
-
Grossman M., Bigeometric Calculus: A System with a Scale-Free Derivative, Archimedes Foundation,
1983.
-
Grossman M., Katz R., Non-Newtonian Calculus, Lee Press, 1972.
-
Gülsen T., Yılmaz E., Göktaş S., Multiplicative Dirac system, Kuwait Journal of Science, 49(3), 1-11,
2022.
-
Has A., Yılmaz B., A non-Newtonian conics in multiplicative analytic geometry, Turkish Journal of
Mathematics, 48(5), 976-994, 2024.
-
Has A., Yılmaz B., A non-Newtonian magnetic curves in multiplicative Riemann manifolds, Physica
Scripta, 99(4), 045239, 2024.
-
Has A., Yılmaz B., Yıldırım H., A non-Newtonian perspective on multiplicative Lorentz–Minkowski
space L^3, Mathematical Methods in the Applied Sciences, 47(18), 13875-13888, 2024.
-
Izumuya S., Takeuchi N., New special curves and developable surfaces, Turkish Journal of Mathematics,
28, 153-163, 2024.
-
Kaya S., Ateş O., Gök I., Yaylı Y., Timelike clad helices and developable surfaces in Minkowski
3-space, Rendiconti del Circolo Matematico di Palermo Series 2, 68, 259–273, 2019.
-
Mak M., Framed clad helices in Euclidean 3-space, Filomat, 37(28), 9627-9640, 2023.
-
Nurkan S.K., Gürgil I., Karacan M.K., Vector properties of geometric calculus, Mathematical
Methods in the Applied Sciences, 46(17), 17672-17691, 2023.
-
Rybaczuk M., Stoppel P., The fractal growth of fatigue defects in materials, International Journal of
Fracture, 103, 71-94, 2000.
-
Rybaczuk M., Zielinski W., The concept of physical and fractal dimension I. The projective dimensions,
Chaos, Solitons and Fractals, 12(13), 2517-2535, 2001.
-
Sadraey M.H., Aircraft Design: A Systems Engineering Approach, Wiley, 2013.
-
Stanley D., A multiplicative calculus, Primus, 9(4), 310-326, 1999.
-
Takahashi T., Takeuchi N., Clad helices and developable surface, Tokyo Gakugei University Bulletin;
Natural Science, 66, 1-9, 2014.
-
Uzer A., Multiplicative type complex calculus as an alternative to the classical calculus, Computers
and Mathematics with Applications, 60, 2725-2737, 2010.
-
Volterra V., Hostinsky B., Operations Infinitesimales Lineares, Herman, 1938.
-
Waseem M., Noor N.A., Shah F.A., Noor K.I., An efficient technique to solve nonlinear equations
using multiplicative calculus, Turkish Journal of Mathematics, 42, 679-691, 2018.
-
Watson J.D., Baker T., Stephen P.B., Gann A., Michael L., et al., Molecular Biology of the Gene,
Pearson Publishing, 2013.
-
Yalçın N., Çelik E., Solution of multiplicative homogeneous linear differential equations with constant
exponentials, New Trends in Mathematical Sciences, 6(2), 58-67, 2018.
-
Yazici M., Selvitopi H., Numerical methods for the multiplicative partial differential equations, Open
Mathematics, 15, 1344-1350, 2017.
-
Yılmaz B., Has A., New approach to slant helix, International Electronic Journal of Geometry, 12,
111-115, 2019.