Research Article
BibTex RIS Cite

Characterization of some local and commercial bread wheat (Triticum aestivum L.) genotypes with allele-specific DNA markers

Year 2024, , 175 - 181, 30.12.2024
https://doi.org/10.51753/flsrt.1459502

Abstract

Landraces play a significant role as genetic reservoirs in wheat breeding studies. Advances in functional marker technology have facilitated early and more precise selection processes. This study involved the characterization of a total of 96 bread wheat genotypes, comprising 76 landraces and 20 registered cultivars, utilizing allele-specific DNA markers targeting various genes including those for gluten strength, yellow rust resistance, stem rust resistance, dwarfness, rye translocation, hardiness. Molecular analysis revealed the presence of 148 alleles, with an average of 21.14 alleles per marker, and an average polymorphic information content (PIC) value of 0.5625. Specific genes such as the rye translocation gene were identified in genotypes 161 and 884, while the grain hardiness gene was found in genotypes 672, 3088, 3384, 3414, and 3541. The stem rust resistance gene was detected in the cultivar Adana-99, the yellow rust resistance gene in genotypes 1635 and 2115, and the grain hardiness gene in 31 genotypes including the cultivar Masaccio. Based on the dendrogram analysis, genotype 3652 exhibited around 93% genetic similarity with the cultivar Masaccio, while genotypes 2190, 2715, and 2897 showed similarity to genotype 2946. Genotypes 2959 and 2960 and genotypes 3334 and 3359 shared approximately 91% genetic similarity.

Project Number

2017/1-67 D

Thanks

This study was one of the chapters of Harun Ocaktan’s doctoral thesis titled “Diallel Analyses of Bread Wheat (Triticum aestivum L.) Genotypes Determined by Allele-Specific DNA Markers and Agronomical Traits”. The authors also would like to thank Kahramanmaraş Sutcu Imam University, Scientific Research Projects Coordination Unit for funding-Project No: 2017/1-67 D.

References

  • Afshari-Behbahanizadeh, S., Puglisi, D., Esposito, S., & De Vita, P. (2024). Allelic variations in Vernalization (Vrn) Genes in Triticum spp. Genes, 15(2), 251.
  • Aktas, H., Karaman, M., Oral, E., Kendal, E., & Tekdal, S. (2017). Evaluation of some bread wheat genotypes of yield and quality parameters under rainfall condition. Journal of Field Crops Central Research Institute, 26(1), 86-95.
  • Babu, R., Sudha, K., Nair, B., Prasanna, M., & Gupta, S. (2004). Integrating marker assisted selection in crop breeding prospects and challenges. Current Science, 87(5), 607-619.
  • Bansal, U.K., Muhammad, S., Forrest, K.L., Hayden, M.J., & Bariana, H.S. (2015). Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theoretical and Applied Genetics, 128, 2113-2119.
  • Butow, B. J., Ma, W., Gale, K. R., Cornish, G. B., Rampling, L., Larroqueand, O., & Bekes, F. (2003). Molecular discrimination of Bx7OE alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics, 107(8), 1524-1532.
  • Dede, B. (2007). Identification of bread wheat landraces using microsatellite DNA markers, Master Thesis, Gaziosmanpasa University, Tokat, Turkiye.
  • Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302. Ellis, M., Spielmeyer, W., Gale, R. Rebetzke, G. J., & Richard, A. (2002). "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 105, 1038-1042.
  • Filip, E., Woronko, K., Stępień, E., & Czarniecka, N. (2023). An overview of factors affecting the functional quality of common wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 24(8), 7524.
  • Gautier, M. F., Aleman, M. E., Guirao, A., Marion, D., Joudrier, P. (1994). Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Molecular Biolgy, 25(1), 43-57.
  • Gebologlu, M. D., & Furan M. A. (2017). Determination of genetic diversity among some Turkish spring bread wheat varieties using SSR markers. Yuzuncu Yil University Journal of Agricultural Sciences, 27(1), 132-138.
  • Gungor, H., & Dumlupinar, Z. (2019). Evaluation of some bread wheat (Triticum aestivum L.) cultivars for yield, yield components and quality traits in Bolu conditions. Turkish Journal of Agricultural and Natural Sciences, 6(1), 44-51.
  • Gupta, P. K., & Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113, 163-185.
  • Habib, M., Hina, A., Sajjad, M., Ahmad, M. Q., Azhar, M. T., & Qayyum, A. (2024). Marker-assisted selection in wheat. In Advances in Wheat Breeding: Towards Climate Resilience and Nutrient Security (pp. 597-621). Singapore: Springer Nature Singapore.
  • Kaya, Y. (2018). Culturing wheat. Siirt University, Faculty of Agriculture Department of Field Crops, Information Note 1. URL: https://www.siirt.edu.tr/dosya/personel/bugdayin-kulture-alinmasi-siirt-201865164933406.pdf, Last accessed on July, 2024.
  • Kocyigit, B. K., Yuce, I., Baskonus, T., Dokuyucu, T, Akkaya, A., & Dumlupinar, Z. (2021). Evaluation of F4 individuals belong to Seri 82 × B35 Bread Wheat (Triticum aestivum L.) cross population using functional DNA markers. KSU Journal of Agriculture and Nature, 24(3), 586-593.
  • Koebner, R. M. D. (1995). Generation of PCR-based markers for the detection of rye chromatin in a wheat background. Theoretical and Applied Genetics, 90(5), 740-745.
  • Maryami, Z., Fazeli, A., & Mehrabi, A. A. (2014). Investigation of diversity of waxy-A1 gene using amplification in different spices in a genome wheats. Advances in Environmental Biology, 8(7), 2004-2007.
  • Merga, W., & Getu, A. (2023). The application of genetic marker for diversity assessment and conserving of plant genetic resource. Journal of Experimental and Molecular Biology, 24(3), 195-206.
  • Ocaktan, H. (2021). Diallele analysis of Bread Wheat (Triticum aestivum L.) genotypes determined by allele specific DNA markers and agronomical traits, Ph.D. Thesis. Kahramanmaras Sutcu Imam University, Kahramanmaras. Turkiye.
  • Oliver, R. E., Obert, D. E., Hu, G., Bonman, J. M., O‟Leary-Jepsen E, Jackson E. W. (2010). Development of oat-based markers from barley and wheat microsatellites. Genome, 53(6), 458-471.
  • Ozsensoy, Y., & Kurar, E. (2012). Marker systems and applications in genetic characterization studies. Journal of Cell and Molecular Biology, 10(2), 11-19.
  • Randhawa, M., Bansal, U., Valárik, M., Klocová B., Doležel J., & Bariana H. (2014). Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theoretical and Applied Genetics, 127, 317-324.
  • Rao, V., & Poonia, A. (2023). Protein characteristics, amino acid profile, health benefits and methods of extraction and isolation of proteins from some pseudocereals-a review. Food Production, Processing and Nutrition, 5(1), 37.
  • Rohlf, F. J. (2005). NTSYSpc (Numerical Taxonomy & Multivariate Analysis System). Version 2.2, Exeter Software, Applied Biostatistics Inc., New York.
  • Sertse, D., You, F. M., Klymiuk, V., Haile, J. K., N’Diaye, A., Pozniak, C. J., Cloutier, S., & Kagale, S. (2023). Historical selection, adaptation signatures, and ambiguity of introgressions in wheat. International Journal of Molecular Sciences, 24(9), 8390.
  • Shariflou, M. R., & Sharp, P. J. (1999). A polymorphic microsatellite in the 3’end of ‘Waxy’ genes of wheat, Triticum aestivum. Plant Breeding, 118, 275-277.
  • Song, L., Wang, R., Yang, X., Zhang, A., & Liu, D. (2023). Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture, 13(3), 642.
  • Teniente-Pérez, D. K., Hernández, J. L., Chavira, M. M., & Melesio, R. (2017). Study of the diversity and genetic footprint of 17 wheat varieties using molecular markers for industrial quality. Seguridad Alimentaria: Aportaciones Científicas y Agrotecnológicas, 267.
  • Tranquilli, G., Lijavetzky, D., Muzzi, G., & Dubcovsky, J. (1999). Genetic and physical characterization of grain texture-related loci in diploid wheat. Molecular and General Genetics, 262, 846-850.
  • Turkoglu, A., Haliloglu, K., Mohammadi, S. A., Ozturk, A., Bolouri, P., Ozkan, G., Bocianowski, J., Pour-Aboughadareh, A., & Jamshidi, B. (2023). Genetic diversity and population structure in Türkiye bread wheat genotypes revealed by simple sequence repeats (SSR) markers. Genes, 14(6), 1182.
  • Undal, V. S., & Ahir, M. R. (2023). The methods of molecular markers in genome analysis: a brief biotechnological approach. Weser Books, 149.
  • Uysal, A., & Dumlupınar, Z. (2022). Characterization of foreign and turkish originated bread and durum wheat landraces by disease resistance and quality using functional markers. KSU Journal of Agriculture and Nature, 25(4), 766-777.
  • Weir, B. S. (1996). Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Inc., Sunderland.

Characterization of some local and commercial bread wheat (Triticum aestivum L.) genotypes with allele-specific DNA markers

Year 2024, , 175 - 181, 30.12.2024
https://doi.org/10.51753/flsrt.1459502

Abstract

Landraces play a significant role as genetic reservoirs in wheat breeding studies. Advances in functional marker technology have facilitated early and more precise selection processes. This study involved the characterization of a total of 96 bread wheat genotypes, comprising 76 landraces and 20 registered cultivars, utilizing allele-specific DNA markers targeting various genes including those for gluten strength, yellow rust resistance, stem rust resistance, dwarfness, rye translocation, hardiness. Molecular analysis revealed the presence of 148 alleles, with an average of 21.14 alleles per marker, and an average polymorphic information content (PIC) value of 0.5625. Specific genes such as the rye translocation gene were identified in genotypes 161 and 884, while the grain hardiness gene was found in genotypes 672, 3088, 3384, 3414, and 3541. The stem rust resistance gene was detected in the cultivar Adana-99, the yellow rust resistance gene in genotypes 1635 and 2115, and the grain hardiness gene in 31 genotypes including the cultivar Masaccio. Based on the dendrogram analysis, genotype 3652 exhibited around 93% genetic similarity with the cultivar Masaccio, while genotypes 2190, 2715, and 2897 showed similarity to genotype 2946. Genotypes 2959 and 2960 and genotypes 3334 and 3359 shared approximately 91% genetic similarity.

Project Number

2017/1-67 D

Thanks

This study was one of the chapters of Harun Ocaktan’s doctoral thesis titled “Diallel Analyses of Bread Wheat (Triticum aestivum L.) Genotypes Determined by Allele-Specific DNA Markers and Agronomical Traits”. The authors also would like to thank Kahramanmaraş Sutcu Imam University, Scientific Research Projects Coordination Unit for funding-Project No: 2017/1-67 D.

References

  • Afshari-Behbahanizadeh, S., Puglisi, D., Esposito, S., & De Vita, P. (2024). Allelic variations in Vernalization (Vrn) Genes in Triticum spp. Genes, 15(2), 251.
  • Aktas, H., Karaman, M., Oral, E., Kendal, E., & Tekdal, S. (2017). Evaluation of some bread wheat genotypes of yield and quality parameters under rainfall condition. Journal of Field Crops Central Research Institute, 26(1), 86-95.
  • Babu, R., Sudha, K., Nair, B., Prasanna, M., & Gupta, S. (2004). Integrating marker assisted selection in crop breeding prospects and challenges. Current Science, 87(5), 607-619.
  • Bansal, U.K., Muhammad, S., Forrest, K.L., Hayden, M.J., & Bariana, H.S. (2015). Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theoretical and Applied Genetics, 128, 2113-2119.
  • Butow, B. J., Ma, W., Gale, K. R., Cornish, G. B., Rampling, L., Larroqueand, O., & Bekes, F. (2003). Molecular discrimination of Bx7OE alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics, 107(8), 1524-1532.
  • Dede, B. (2007). Identification of bread wheat landraces using microsatellite DNA markers, Master Thesis, Gaziosmanpasa University, Tokat, Turkiye.
  • Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302. Ellis, M., Spielmeyer, W., Gale, R. Rebetzke, G. J., & Richard, A. (2002). "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 105, 1038-1042.
  • Filip, E., Woronko, K., Stępień, E., & Czarniecka, N. (2023). An overview of factors affecting the functional quality of common wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 24(8), 7524.
  • Gautier, M. F., Aleman, M. E., Guirao, A., Marion, D., Joudrier, P. (1994). Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Molecular Biolgy, 25(1), 43-57.
  • Gebologlu, M. D., & Furan M. A. (2017). Determination of genetic diversity among some Turkish spring bread wheat varieties using SSR markers. Yuzuncu Yil University Journal of Agricultural Sciences, 27(1), 132-138.
  • Gungor, H., & Dumlupinar, Z. (2019). Evaluation of some bread wheat (Triticum aestivum L.) cultivars for yield, yield components and quality traits in Bolu conditions. Turkish Journal of Agricultural and Natural Sciences, 6(1), 44-51.
  • Gupta, P. K., & Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113, 163-185.
  • Habib, M., Hina, A., Sajjad, M., Ahmad, M. Q., Azhar, M. T., & Qayyum, A. (2024). Marker-assisted selection in wheat. In Advances in Wheat Breeding: Towards Climate Resilience and Nutrient Security (pp. 597-621). Singapore: Springer Nature Singapore.
  • Kaya, Y. (2018). Culturing wheat. Siirt University, Faculty of Agriculture Department of Field Crops, Information Note 1. URL: https://www.siirt.edu.tr/dosya/personel/bugdayin-kulture-alinmasi-siirt-201865164933406.pdf, Last accessed on July, 2024.
  • Kocyigit, B. K., Yuce, I., Baskonus, T., Dokuyucu, T, Akkaya, A., & Dumlupinar, Z. (2021). Evaluation of F4 individuals belong to Seri 82 × B35 Bread Wheat (Triticum aestivum L.) cross population using functional DNA markers. KSU Journal of Agriculture and Nature, 24(3), 586-593.
  • Koebner, R. M. D. (1995). Generation of PCR-based markers for the detection of rye chromatin in a wheat background. Theoretical and Applied Genetics, 90(5), 740-745.
  • Maryami, Z., Fazeli, A., & Mehrabi, A. A. (2014). Investigation of diversity of waxy-A1 gene using amplification in different spices in a genome wheats. Advances in Environmental Biology, 8(7), 2004-2007.
  • Merga, W., & Getu, A. (2023). The application of genetic marker for diversity assessment and conserving of plant genetic resource. Journal of Experimental and Molecular Biology, 24(3), 195-206.
  • Ocaktan, H. (2021). Diallele analysis of Bread Wheat (Triticum aestivum L.) genotypes determined by allele specific DNA markers and agronomical traits, Ph.D. Thesis. Kahramanmaras Sutcu Imam University, Kahramanmaras. Turkiye.
  • Oliver, R. E., Obert, D. E., Hu, G., Bonman, J. M., O‟Leary-Jepsen E, Jackson E. W. (2010). Development of oat-based markers from barley and wheat microsatellites. Genome, 53(6), 458-471.
  • Ozsensoy, Y., & Kurar, E. (2012). Marker systems and applications in genetic characterization studies. Journal of Cell and Molecular Biology, 10(2), 11-19.
  • Randhawa, M., Bansal, U., Valárik, M., Klocová B., Doležel J., & Bariana H. (2014). Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theoretical and Applied Genetics, 127, 317-324.
  • Rao, V., & Poonia, A. (2023). Protein characteristics, amino acid profile, health benefits and methods of extraction and isolation of proteins from some pseudocereals-a review. Food Production, Processing and Nutrition, 5(1), 37.
  • Rohlf, F. J. (2005). NTSYSpc (Numerical Taxonomy & Multivariate Analysis System). Version 2.2, Exeter Software, Applied Biostatistics Inc., New York.
  • Sertse, D., You, F. M., Klymiuk, V., Haile, J. K., N’Diaye, A., Pozniak, C. J., Cloutier, S., & Kagale, S. (2023). Historical selection, adaptation signatures, and ambiguity of introgressions in wheat. International Journal of Molecular Sciences, 24(9), 8390.
  • Shariflou, M. R., & Sharp, P. J. (1999). A polymorphic microsatellite in the 3’end of ‘Waxy’ genes of wheat, Triticum aestivum. Plant Breeding, 118, 275-277.
  • Song, L., Wang, R., Yang, X., Zhang, A., & Liu, D. (2023). Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture, 13(3), 642.
  • Teniente-Pérez, D. K., Hernández, J. L., Chavira, M. M., & Melesio, R. (2017). Study of the diversity and genetic footprint of 17 wheat varieties using molecular markers for industrial quality. Seguridad Alimentaria: Aportaciones Científicas y Agrotecnológicas, 267.
  • Tranquilli, G., Lijavetzky, D., Muzzi, G., & Dubcovsky, J. (1999). Genetic and physical characterization of grain texture-related loci in diploid wheat. Molecular and General Genetics, 262, 846-850.
  • Turkoglu, A., Haliloglu, K., Mohammadi, S. A., Ozturk, A., Bolouri, P., Ozkan, G., Bocianowski, J., Pour-Aboughadareh, A., & Jamshidi, B. (2023). Genetic diversity and population structure in Türkiye bread wheat genotypes revealed by simple sequence repeats (SSR) markers. Genes, 14(6), 1182.
  • Undal, V. S., & Ahir, M. R. (2023). The methods of molecular markers in genome analysis: a brief biotechnological approach. Weser Books, 149.
  • Uysal, A., & Dumlupınar, Z. (2022). Characterization of foreign and turkish originated bread and durum wheat landraces by disease resistance and quality using functional markers. KSU Journal of Agriculture and Nature, 25(4), 766-777.
  • Weir, B. S. (1996). Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Inc., Sunderland.
There are 33 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Research Articles
Authors

Harun Ocaktan 0000-0003-1711-5712

Hüseyin Güngör 0000-0001-6708-6337

Ziya Dumlupınar 0000-0003-3119-6926

Project Number 2017/1-67 D
Publication Date December 30, 2024
Submission Date March 26, 2024
Acceptance Date September 15, 2024
Published in Issue Year 2024

Cite

APA Ocaktan, H., Güngör, H., & Dumlupınar, Z. (2024). Characterization of some local and commercial bread wheat (Triticum aestivum L.) genotypes with allele-specific DNA markers. Frontiers in Life Sciences and Related Technologies, 5(3), 175-181. https://doi.org/10.51753/flsrt.1459502

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.