Review
BibTex RIS Cite

CRISPR/Cas9 technology and usage in the food industry

Year 2022, Volume: 3 Issue: 1, 36 - 42, 30.04.2022
https://doi.org/10.51753/flsrt.997899

Abstract

By the increase of world population, arable lands are decreasing and related to this, food security concerns are increasing. In order to avoid these concerns, it is necessary to use modern biotechnological tools and molecular breeding methods. CRISPR/Cas9 is a genome editing method that creates double-stranded breaks using the site-specific nuclease enzyme. This method is used for providing disease resistance in farm animals, increasing yield characteristics, obtaining starter cultures resistant to bacteriophages, eliminating cancer types and hereditary diseases in medicine, growing more resistant and high yielding plants against drought and pests in agriculture. In the field, it is used for the cultivation of high-yielding plants that are more resistant to drought and pests. It is thought that CRISPR/Cas9 technology will be useful when it is carried out within the framework of legal regulations and under the control of scientific research. However, ethical debates continue regarding the use of the method and the fact that technological applications are not easily accepted by the society.

References

  • Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends in plant science, 20(3), 145-149.
  • ABAD, (2018). Court of Justice of the European Union, Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. No: 111/18, C-528/16.
  • Anonim, (2020). The Nobel Prize News, https://www.nobelprize.org/all-nobel-prizes-2020/ Last accessed on March 2022.
  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.
  • Barrangou, R., & van der Oost, J. (2013). RNA-mediated Adaptive Immunity in Bacteria and Archaea. In CRISPR-Cas Systems. Springer Verlag.
  • Berkeley News, (2018). Doudna-Charpentier team awarded U.S. patent for CRISPR-Cas9. Berkeley News. https://news.berkeley.edu/2018/06/19/doudna-charpentier-team-awarded-u-s-patent-for-crispr-cas9/ Erişim tarihi: 12.03.2022.
  • Bevacqua, R. J., Fernandez-Martín, R., Savy, V., Canel, N. G., Gismondi, M. I., Kues, W. A., & Salamone, D. F. (2016). Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 86(8), 1886-1896.
  • Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: the case of functional foods. Trends in Food Science & Technology, 31(2), 118-129.
  • Bilgi. F., Demirtaş, Z., & Mercan, L. (2016). Hayvan Islahında Güncel Bir Yaklaşım: CRISPR/Cas9 Genom Modifikasyon Sistemi. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 4(12), 1118-1122.
  • Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561.
  • Briner, A. E., Lugli, G. A., Milani, C., Duranti, S., Turroni, F., Gueimonde, M., & Barrangou, R. (2015). Occurrence and diversity of CRISPR-Cas systems in the genus Bifidobacterium. PloS one, 10(7), e0133661.
  • Callaway, E. (2018) EU law deals blow to CRISPR crops. Nature. 560(7716), 16.
  • Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International journal of food microbiology, 50(1-2), 131-149.
  • Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., & Kim, J. S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research, 24(1), 132-141.
  • Cildir, O. S., & Ozmen, O. (2018). Çiftlik Hayvanlarında CRISPR/Cas9 Uygulamaları. Selcuk Journal of Agriculture and Food Sciences, 32(3), 559-566.
  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
  • Crispo, M., Mulet, A. P., Tesson, L., Barrera, N., Cuadro, F., dos Santos-Neto, P. C., & Menchaca, A. (2015). Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PloS one, 10(8), e0136690.
  • Deng, L., Kenchappa, C. S., Peng, X., She, Q., & Garrett, R. A. (2012). Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic acids research, 40(6), 2470-2480.
  • Ding, Q., Strong, A., Patel, K. M., Ng, S. L., Gosis, B. S., Regan, S. N., & Musunuru, K. (2014). Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation research, 115(5), 488-492.
  • Elpe, S. (2021). Are Genetically Modified Organisms Safe for Human Health and the Environment? Journal of Medical Sciences, 2(4), 10-19.
  • EPA. (2013). United States Environmental Protection Agency, Regulation of Genetically Engineered Microorganisms Under FIFRA, FFDCA and TSCA. Regulation of Biotechnology under TSCA and FIFRA, 57-94.
  • Es, I., Gavahian, M., Marti-Quijal, F. J., Lorenzo, J. M., Khaneghah, A. M., Tsatsanis, C., & Barba, F. J. (2019). The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges. Biotechnology advances, 37(3), 410-421.
  • Esen, V.K., Cemal, I., & Elmaci, C. (2020). Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği. Hayvan Bilim ve Ürünleri Dergisi,3(2): 189-209.
  • FDA. (2015). Food and Drug Administration, AquaBounty Technologies' application to produce AquAdvantage Salmon, a genetically engineered (GE) Atlantic salmon. AquaBounty Technologies, Inc. NADA 141-454.
  • Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., ... & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell research, 23(10), 1229-1232.
  • Gaj, T., Gersbach, C. A., & Barbas III, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology, 31(7), 397-405.
  • Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., ... & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67-71.
  • Georges, F., & Ray, H. (2017). Genome editing of crops: a renewed opportunity for food security. GM Crops and Food, 8(1), 1-12.
  • Hackett, P.B., Fahrenkrug, S.C., & Carlson, D.F. (2014) The Promises and Challenges of Precision Gene Editing in Animals of Agricultural Importance. NABC Report. 26: 39-45.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology and hepatology.
  • Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962), 167-170.
  • Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology, 31(3), 227-229.
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169(12), 5429-5433.
  • Jansen, R., Embden, J. D. V., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.
  • Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013) RNA-programmed genome editing in human cells. Elife. 2: e00471.
  • Kose, S.B.E., Sura, Ü., Yirun, A., Balcı, A., Gümüşel, B.K., & Erkekoglu, P. (2020) CRISPR-Cas9 Teknolojisi, Güvenliliği ve Etik Açıdan Değerlendirilmesi. Literatür Eczacılık Bilimleri Dergisi, 9(1): 50-64.
  • Ledford, H. (2015). Salmon approval heralds rethink of transgenic animals. Nature News, 527(7579), 417.
  • Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41(2), 63-68.
  • Luthra, R., Kaur, S., & Bhandari, K. (2021). Applications of CRISPR as a potential therapeutic. Life Sciences, 284, 119908.
  • Mak, A.N., Bradley, P., Cernadas, R.A., Bogdanove, A.J., & Stoddard, B.L. (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 335: 716-719.
  • Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B., & Koonin, E. V. (2002). A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic acids research, 30(2), 482-496.
  • Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., & Church, G.M. (2013) RNA-guided human genome engineering via Cas9. Science. 339: 823–826.
  • Mali, F. (2022). Key Socio‐Economic and (Bio) Ethical Challenges in the CRISPR‐Cas9 Patent Landscape. Genome Editing in Drug Discovery, 315-327.
  • Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., ... & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell research, 23(10), 1233-1236.
  • Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., & Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature biotechnology, 29(2), 143-148.
  • Niu, Y., Jin, M., Li, Y., Li, P., Zhou, J., Wang, X., & Chen, Y. (2017). Biallelic β‐carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9. Animal genetics, 48(2), 242-244.
  • O’Geen, H., Abigail, S. Y., & Segal, D. J. (2015). How specific is CRISPR/Cas9 really?. Current opinion in chemical biology, 29, 72-78.
  • Ouyang, B., Gu, X., & Holford, P. (2017). Plant genetic engineering and biotechnology: a sustainable solution for future food security and industry. Plant Growth Regulation, 83(2), 171-173.
  • Ozyigit, I. I., Can, H., & Dogan, I. (2021). Phytoremediation using genetically engineered plants to remove metals: a review. Environmental Chemistry Letters, 19(1), 669-698.
  • Papadimitriou, K., Pot, B., & Tsakalidou, E. (2015). How microbes adapt to a diversity of food niches. Current Opinion in Food Science, 2, 29-35.
  • Petersen, B., & Niemann, H. (2015). Molecular scissors and their application in genetically modified farm animals. Transgenic research, 24(3), 381-396.
  • Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., & Fahrenkrug, S. C. (2015). Genome edited sheep and cattle. Transgenic research, 24(1), 147-153.
  • Reardon, S. (2016) Welcome to the CRISPR zoo. Nature. 531(7593), 160.
  • Ruan, J., Xu, J., Chen-Tsai, R. Y., & Li, K. (2017). Genome editing in livestock: Are we ready for a revolution in animal breeding industry?. Transgenic research, 26(6), 715-726.
  • Sands, P., & Galizzi, P. (2006). Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC (OJ L 106 17.04.2001 1) In: Documents in European Community Environmental Law. (pp 787–836). Cambridge University Press, Cambridge.
  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States—major pathogens. Emerging infectious diseases, 17(1), 7.
  • Scharff, R. L. (2012). Economic burden from health losses due to foodborne illness in the United States. Journal of food protection, 75(1), 123-131.
  • Segal, D. J., & Meckler, J. F. (2013). Genome engineering at the dawn of the golden age. Annual review of genomics and human genetics, 14, 135-158.
  • Selle, K., & Barrangou, R. (2015). CRISPR‐Based technologies and the future of food science. Journal of food science, 80(11), R2367-R2372.
  • Seok, H., Deng, R., Cowan, D. B., & Wang, D. Z. (2021). Application of CRISPR-Cas9 gene editing for congenital heart disease. Clinical and experimental pediatrics, 64(6), 269.
  • Stout, E., Klaenhammer, T., & Barrangou, R. (2017). CRISPR-Cas technologies and applications in food bacteria. Annual review of food science and technology, 8, 413-437.
  • Sun, Z., Harris, H. M., McCann, A., Guo, C., Argimón, S., Zhang, W., & O’Toole, P. W. (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature communications, 6(1), 1-13.
  • Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A., Hackett, P. B., & Fahrenkrug, S. C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences, 110(41), 16526-16531.
  • Verma, A. K., Mandal, S., Tiwari, A., Monachesi, C., Catassi, G. N., Srivastava, A., ... & Catassi, C. (2021). Current status and perspectives on the application of CRISPR/Cas9 Gene-editing system to develop a low-gluten, non-transgenic wheat variety. Foods, 10(10), 2351.
  • Veron, N., Qu, Z., Kipen, P. A., Hirst, C. E., & Marcelle, C. (2015). CRISPR mediated somatic cell genome engineering in the chicken. Developmental biology, 407(1), 68-74.
  • Wang, X., Cai, B., Zhou, J., Zhu, H., Niu, Y., Ma, B., Yu, H., Lei, A., Yan, H., Shen, X., Shi, L., Zhao, X., Hua, J., Huang, X., Qu, L., & Chen, Y. (2016). Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers. PLoS One 11 (10).
  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, 32(9), 947-951.
  • Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N.S., Cai, W., Yang, G., Bronson, R., Crowley, D.G., Zhang, F., Anderson, D.G., Sharp, P.A., & Jacks, T. (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 514(7522): 380-384.
  • Young, S. A., Miyata, H., Satouh, Y., Kato, H., Nozawa, K., Isotani, A., & Ikawa, M. (2015). CRISPR/Cas9-mediated rapid generation of multiple mouse lines identified Ccdc63 as essential for spermiogenesis. International journal of molecular sciences, 16(10), 24732-24750.
  • Zhan, T., Rindtorff, N., Betge, J., Ebert, M. P., & Boutros, M. (2019, April). CRISPR/Cas9 for cancer research and therapy. In Seminars in cancer biology (Vol. 55, pp. 106-119). Academic Press.
  • Zhang, Y., Pribil, M., Palmgren, M., & Gao, C. (2020) A CRISPR way for accelerating improvement of food crops. Nature Food 1(4): 200-205.
  • ZMO, (2020b) Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1. https://www.zmo.org.tr/resimler/ekler/3e99ecaf98a5e17_ek .pdf Erişim tarihi: 12.03.2022.
  • Zuo, Q., Wang, Y., Cheng, S., Lian, C., Tang, B., Wang, F., & Li, B. (2016). Site-directed genome knockout in chicken cell line and embryos can use CRISPR/Cas gene editing technology. G3: Genes, Genomes, Genetics, 6(6), 1787-1792.

CRISPR/Cas9 teknolojisi ve gıda alanında kullanımı

Year 2022, Volume: 3 Issue: 1, 36 - 42, 30.04.2022
https://doi.org/10.51753/flsrt.997899

Abstract

Artan dünya nüfusu ile birlikte, tarıma elverişli araziler azalmakta ve buna bağlı olarak gıda güvenliğine ilişkin endişeler artmaktadır. Bu endişelerin önüne geçmek için moleküler ıslah yöntemlerinin yanı sıra modern biyoteknolojik araçlarında kullanılması gerekmektedir. CRISPR/Cas9, bölgeye özgü nükleaz enzimini kullanarak çift sarmallı kırılmalar oluşturan genom düzenleme yöntemidir. Çiftlik hayvanlarında hastalıklara karşı direnç oluşturulması, verim özelliklerinin yükseltilmesi, bakteriyofajlara karşı dirençli başlangıç kültürlerinin (starter kültürler) elde edilmesi, tıp alanında kanser türleri ve kalıtsal hastalıkların elemine edilmesi, tarım alanında kuraklık ve zararlılara karşı daha dirençli ve yüksek verimli bitkilerin yetiştirilmesi için kullanılmaktadır. CRISPR/Cas9 teknolojisinin yasal mevzuat çerçevesinde ve bilimsel araştırmalar kontrolünde gerçekleştirildiğinde yararlı olacağı düşünülmektedir. Ancak teknolojik uygulamaların toplum üzerinde kolay kabul görmemesi ve yöntemin kullanımı konusunda etik tartışmalar devam etmektedir.

References

  • Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends in plant science, 20(3), 145-149.
  • ABAD, (2018). Court of Justice of the European Union, Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. No: 111/18, C-528/16.
  • Anonim, (2020). The Nobel Prize News, https://www.nobelprize.org/all-nobel-prizes-2020/ Last accessed on March 2022.
  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.
  • Barrangou, R., & van der Oost, J. (2013). RNA-mediated Adaptive Immunity in Bacteria and Archaea. In CRISPR-Cas Systems. Springer Verlag.
  • Berkeley News, (2018). Doudna-Charpentier team awarded U.S. patent for CRISPR-Cas9. Berkeley News. https://news.berkeley.edu/2018/06/19/doudna-charpentier-team-awarded-u-s-patent-for-crispr-cas9/ Erişim tarihi: 12.03.2022.
  • Bevacqua, R. J., Fernandez-Martín, R., Savy, V., Canel, N. G., Gismondi, M. I., Kues, W. A., & Salamone, D. F. (2016). Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 86(8), 1886-1896.
  • Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: the case of functional foods. Trends in Food Science & Technology, 31(2), 118-129.
  • Bilgi. F., Demirtaş, Z., & Mercan, L. (2016). Hayvan Islahında Güncel Bir Yaklaşım: CRISPR/Cas9 Genom Modifikasyon Sistemi. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 4(12), 1118-1122.
  • Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561.
  • Briner, A. E., Lugli, G. A., Milani, C., Duranti, S., Turroni, F., Gueimonde, M., & Barrangou, R. (2015). Occurrence and diversity of CRISPR-Cas systems in the genus Bifidobacterium. PloS one, 10(7), e0133661.
  • Callaway, E. (2018) EU law deals blow to CRISPR crops. Nature. 560(7716), 16.
  • Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International journal of food microbiology, 50(1-2), 131-149.
  • Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., & Kim, J. S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research, 24(1), 132-141.
  • Cildir, O. S., & Ozmen, O. (2018). Çiftlik Hayvanlarında CRISPR/Cas9 Uygulamaları. Selcuk Journal of Agriculture and Food Sciences, 32(3), 559-566.
  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
  • Crispo, M., Mulet, A. P., Tesson, L., Barrera, N., Cuadro, F., dos Santos-Neto, P. C., & Menchaca, A. (2015). Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PloS one, 10(8), e0136690.
  • Deng, L., Kenchappa, C. S., Peng, X., She, Q., & Garrett, R. A. (2012). Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic acids research, 40(6), 2470-2480.
  • Ding, Q., Strong, A., Patel, K. M., Ng, S. L., Gosis, B. S., Regan, S. N., & Musunuru, K. (2014). Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation research, 115(5), 488-492.
  • Elpe, S. (2021). Are Genetically Modified Organisms Safe for Human Health and the Environment? Journal of Medical Sciences, 2(4), 10-19.
  • EPA. (2013). United States Environmental Protection Agency, Regulation of Genetically Engineered Microorganisms Under FIFRA, FFDCA and TSCA. Regulation of Biotechnology under TSCA and FIFRA, 57-94.
  • Es, I., Gavahian, M., Marti-Quijal, F. J., Lorenzo, J. M., Khaneghah, A. M., Tsatsanis, C., & Barba, F. J. (2019). The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges. Biotechnology advances, 37(3), 410-421.
  • Esen, V.K., Cemal, I., & Elmaci, C. (2020). Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği. Hayvan Bilim ve Ürünleri Dergisi,3(2): 189-209.
  • FDA. (2015). Food and Drug Administration, AquaBounty Technologies' application to produce AquAdvantage Salmon, a genetically engineered (GE) Atlantic salmon. AquaBounty Technologies, Inc. NADA 141-454.
  • Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., ... & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell research, 23(10), 1229-1232.
  • Gaj, T., Gersbach, C. A., & Barbas III, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology, 31(7), 397-405.
  • Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., ... & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67-71.
  • Georges, F., & Ray, H. (2017). Genome editing of crops: a renewed opportunity for food security. GM Crops and Food, 8(1), 1-12.
  • Hackett, P.B., Fahrenkrug, S.C., & Carlson, D.F. (2014) The Promises and Challenges of Precision Gene Editing in Animals of Agricultural Importance. NABC Report. 26: 39-45.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology and hepatology.
  • Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962), 167-170.
  • Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology, 31(3), 227-229.
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169(12), 5429-5433.
  • Jansen, R., Embden, J. D. V., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.
  • Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013) RNA-programmed genome editing in human cells. Elife. 2: e00471.
  • Kose, S.B.E., Sura, Ü., Yirun, A., Balcı, A., Gümüşel, B.K., & Erkekoglu, P. (2020) CRISPR-Cas9 Teknolojisi, Güvenliliği ve Etik Açıdan Değerlendirilmesi. Literatür Eczacılık Bilimleri Dergisi, 9(1): 50-64.
  • Ledford, H. (2015). Salmon approval heralds rethink of transgenic animals. Nature News, 527(7579), 417.
  • Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41(2), 63-68.
  • Luthra, R., Kaur, S., & Bhandari, K. (2021). Applications of CRISPR as a potential therapeutic. Life Sciences, 284, 119908.
  • Mak, A.N., Bradley, P., Cernadas, R.A., Bogdanove, A.J., & Stoddard, B.L. (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 335: 716-719.
  • Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B., & Koonin, E. V. (2002). A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic acids research, 30(2), 482-496.
  • Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., & Church, G.M. (2013) RNA-guided human genome engineering via Cas9. Science. 339: 823–826.
  • Mali, F. (2022). Key Socio‐Economic and (Bio) Ethical Challenges in the CRISPR‐Cas9 Patent Landscape. Genome Editing in Drug Discovery, 315-327.
  • Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., ... & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell research, 23(10), 1233-1236.
  • Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., & Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature biotechnology, 29(2), 143-148.
  • Niu, Y., Jin, M., Li, Y., Li, P., Zhou, J., Wang, X., & Chen, Y. (2017). Biallelic β‐carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9. Animal genetics, 48(2), 242-244.
  • O’Geen, H., Abigail, S. Y., & Segal, D. J. (2015). How specific is CRISPR/Cas9 really?. Current opinion in chemical biology, 29, 72-78.
  • Ouyang, B., Gu, X., & Holford, P. (2017). Plant genetic engineering and biotechnology: a sustainable solution for future food security and industry. Plant Growth Regulation, 83(2), 171-173.
  • Ozyigit, I. I., Can, H., & Dogan, I. (2021). Phytoremediation using genetically engineered plants to remove metals: a review. Environmental Chemistry Letters, 19(1), 669-698.
  • Papadimitriou, K., Pot, B., & Tsakalidou, E. (2015). How microbes adapt to a diversity of food niches. Current Opinion in Food Science, 2, 29-35.
  • Petersen, B., & Niemann, H. (2015). Molecular scissors and their application in genetically modified farm animals. Transgenic research, 24(3), 381-396.
  • Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., & Fahrenkrug, S. C. (2015). Genome edited sheep and cattle. Transgenic research, 24(1), 147-153.
  • Reardon, S. (2016) Welcome to the CRISPR zoo. Nature. 531(7593), 160.
  • Ruan, J., Xu, J., Chen-Tsai, R. Y., & Li, K. (2017). Genome editing in livestock: Are we ready for a revolution in animal breeding industry?. Transgenic research, 26(6), 715-726.
  • Sands, P., & Galizzi, P. (2006). Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC (OJ L 106 17.04.2001 1) In: Documents in European Community Environmental Law. (pp 787–836). Cambridge University Press, Cambridge.
  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States—major pathogens. Emerging infectious diseases, 17(1), 7.
  • Scharff, R. L. (2012). Economic burden from health losses due to foodborne illness in the United States. Journal of food protection, 75(1), 123-131.
  • Segal, D. J., & Meckler, J. F. (2013). Genome engineering at the dawn of the golden age. Annual review of genomics and human genetics, 14, 135-158.
  • Selle, K., & Barrangou, R. (2015). CRISPR‐Based technologies and the future of food science. Journal of food science, 80(11), R2367-R2372.
  • Seok, H., Deng, R., Cowan, D. B., & Wang, D. Z. (2021). Application of CRISPR-Cas9 gene editing for congenital heart disease. Clinical and experimental pediatrics, 64(6), 269.
  • Stout, E., Klaenhammer, T., & Barrangou, R. (2017). CRISPR-Cas technologies and applications in food bacteria. Annual review of food science and technology, 8, 413-437.
  • Sun, Z., Harris, H. M., McCann, A., Guo, C., Argimón, S., Zhang, W., & O’Toole, P. W. (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature communications, 6(1), 1-13.
  • Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A., Hackett, P. B., & Fahrenkrug, S. C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences, 110(41), 16526-16531.
  • Verma, A. K., Mandal, S., Tiwari, A., Monachesi, C., Catassi, G. N., Srivastava, A., ... & Catassi, C. (2021). Current status and perspectives on the application of CRISPR/Cas9 Gene-editing system to develop a low-gluten, non-transgenic wheat variety. Foods, 10(10), 2351.
  • Veron, N., Qu, Z., Kipen, P. A., Hirst, C. E., & Marcelle, C. (2015). CRISPR mediated somatic cell genome engineering in the chicken. Developmental biology, 407(1), 68-74.
  • Wang, X., Cai, B., Zhou, J., Zhu, H., Niu, Y., Ma, B., Yu, H., Lei, A., Yan, H., Shen, X., Shi, L., Zhao, X., Hua, J., Huang, X., Qu, L., & Chen, Y. (2016). Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers. PLoS One 11 (10).
  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, 32(9), 947-951.
  • Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N.S., Cai, W., Yang, G., Bronson, R., Crowley, D.G., Zhang, F., Anderson, D.G., Sharp, P.A., & Jacks, T. (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 514(7522): 380-384.
  • Young, S. A., Miyata, H., Satouh, Y., Kato, H., Nozawa, K., Isotani, A., & Ikawa, M. (2015). CRISPR/Cas9-mediated rapid generation of multiple mouse lines identified Ccdc63 as essential for spermiogenesis. International journal of molecular sciences, 16(10), 24732-24750.
  • Zhan, T., Rindtorff, N., Betge, J., Ebert, M. P., & Boutros, M. (2019, April). CRISPR/Cas9 for cancer research and therapy. In Seminars in cancer biology (Vol. 55, pp. 106-119). Academic Press.
  • Zhang, Y., Pribil, M., Palmgren, M., & Gao, C. (2020) A CRISPR way for accelerating improvement of food crops. Nature Food 1(4): 200-205.
  • ZMO, (2020b) Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1. https://www.zmo.org.tr/resimler/ekler/3e99ecaf98a5e17_ek .pdf Erişim tarihi: 12.03.2022.
  • Zuo, Q., Wang, Y., Cheng, S., Lian, C., Tang, B., Wang, F., & Li, B. (2016). Site-directed genome knockout in chicken cell line and embryos can use CRISPR/Cas gene editing technology. G3: Genes, Genomes, Genetics, 6(6), 1787-1792.
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Genetics
Journal Section Review
Authors

Ayşegül Bölükbaş 0000-0002-5516-3689

Ali Gücükoğlu 0000-0002-8465-7768

Publication Date April 30, 2022
Submission Date September 20, 2021
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Bölükbaş, A., & Gücükoğlu, A. (2022). CRISPR/Cas9 teknolojisi ve gıda alanında kullanımı. Frontiers in Life Sciences and Related Technologies, 3(1), 36-42. https://doi.org/10.51753/flsrt.997899

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.