Review Article
BibTex RIS Cite

Exploring Wood as a Natural Piezoelectric Material: A Review of Historical Development, Mechanisms, and Applications

Year 2025, Volume: 1 Issue: 2, 1 - 7, 30.12.2025

Abstract

Wood is a sustainable material that exhibits natural piezoelectric behavior due to its anisotropic properties arising from its crystalline cellulose structure. Since the mid-20th century, scientific interest in the piezoelectric properties of wood has expanded from fundamental research on crystal mechanics to applications in energy harvesting, sensing systems, and smart materials. This review addresses the body of research conducted on the piezoelectric behavior of wood, examining the fundamental mechanisms and current potential applications from a holistic perspective. By comparatively analyzing historical and contemporary studies, significant insights are provided into the relationship between the piezoelectric properties of wood and its structural characteristics. The study concludes with guiding recommendations for future research and potential applications in environmentally friendly and energy-efficient technologies.

References

  • Abbasi Moud, A., 2022: Cellulose nanocrystals examined by atomic force microscopy: Applications and fundamentals. ACS Food Science & Technology, 2: 1789–1818, https://doi.org/10.1021/acsfoodscitech.2c00289
  • Al-Haik, M.Y., Kabir, M.M., Siddique, W., AlNuaimi, S., Aldajah, S., 2020: An experimental study on piezoelectric energy harvesting from palm tree induced by wind. Engineering Research Express, 2(2): 025044, https://doi.org/10.1088/2631-8695/ab9bf1
  • Bazhenov, V.A., Konstantinova, V.P., 1950: Piezoelectric properties of wood. Doklady Akod. Nauk SSSR, 71(2).
  • Bazhenov, V.A., 1961: Piezoelectric Properties of Wood. New York: Consultants Bureau. 176 p.
  • Csoka, L., Hoeger, I.C., Rojas, O.J., Peszlen, I., Pawlak, J.J., Peralta, P.N., 2012: Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Letters, 1(7): 867-870, https://doi.org/10.1021/mz300234a
  • Dahiya, R.S., Valle, M., 2013: Robotic Tactile Sensing: Technologies and System. Dordrecht: Springer Netherlands.
  • Fukada, E., 1955: Piezoelectricity of wood. Journal of the Physical Society of Japan, 10(2): 149-154, https://doi.org/10.1143/JPSJ.10.149
  • Galligan, W.L., Bertholf, L.D., 1963: Piezoelectric effect in wood. Forest Products Journal, 13(12): 517-521.
  • Hassan, S.M., Alajami, J.A., Al-Azmi, D.E., Al-Qahtani, N.R., 2025: Piezoelectricity generation for charging mobile phones and compared with conventional charging methods. Journal of Power and Energy Engineering, 13(4): 13-22, https://doi.org/10.4236/jpee.2025.134002
  • Kan, J., Ross, R.J., Wang, X., Li, W., 2017: Energy harvesting from wood floor vibration using a piezoelectric generator. Research Note, FPL–RN–0347. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory. p. 1-7, https://doi.org/10.2737/FPL-RN-347
  • Knuffel, W., Pizzi, A., 1986: The piezoelectric effect in structural timber. Holzforschung, 40(3): 157-162.
  • Knuffel, W.E., 1988: The piezoelectric effect in structural timber-part II. The influence of natural defects. Holzforschung, 42(4): 247-252.
  • Liao, X., Xie, H., Liao, B., Hou, S., Yu, Y., Fan, X., 2022: Ball milling induced strong polarization electric fields in Cu3B2O6 crystals for high efficiency piezocatalysis. Nano Energy, 94: 106890, https://doi.org/10.1016/j.nanoen.2021.106890
  • Nakai, T., Takemura, T., 1993: Piezoelectric behaviors of wood during compression tests. Mokuzai Gakkaishi. 39(3): 265–270.
  • Nakai, T., Igushi, N., Ando, K., 1998: Piezoelectric behavior of wood under combined compression and vibration stresses I: Relation between piezoelectric voltage and microscopic deformation of a Sitka spruce (Picea sitchensis Carr.). Journal of Wood Science, 44(1): 28-34.
  • Nakai, T., Hamatake, M., Nakao, T., 2004: Relationship between piezoelectric behavior and the stress–strain curve of wood under combined compression and vibration stresses. Journal of Wood Science, 50(1): 97-99, https://doi.org/10.1007/s10086-003-0590-2
  • Nakai, T., Yamamoto, H., Nakao, T., Hamatake, M., 2005: Mechanical behavior of the crystalline region of wood and the piezoelectric response of wood in tension tests. Wood Science and Technology, 39(2): 163-168, https://doi.org/10.1007/s00226-004-0285-x
  • Niemz, P., Emmler, R., Pridöhl, E., Fröhlich, J., Lühmann, A., 1994: Comparative studies on the use of acoustic emission and piezoelectric effects during wood drying. Holz als Roh-und Werkstoff, 52: 162-168.
  • Pan, X., Wu, Y., Wang, Y., Zhou, G., Cai, H., 2024: Mechanical energy harvesting based on the piezoelectric materials: recent advances and future perspectives. Chemical Engineering Journal, 497: 154249. https://doi.org/10.1016/j.cej.2024.154249
  • Plackner, J., 2009: The Converse Piezoelectric Effect in Wood and Cellulose Materials. na.
  • Shubnikov, A.V., 1946: Piezoelectric Textures. Moskova, Russia: Izvestiya Akademii Nauk, Seriya Biologicheskaya [Proceedings of the Academy of Sciences, Biological Series]. 84 pp.
  • Sun, J., Guo, H., Ribera, J., Wu, C., Tu, K., Binelli, M., Panzarasa, G., Schwarze, F.W.M.R., Wang, Z.L., Burgert, I., 2020: Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano, 14(11): 14665-14674, https://doi.org/10.1021/acsnano.0c05493
  • Sun, J., Guo, H., Schädli, G.N., Tu, K., Schär, S., Schwarze, F.W., Panzarasa, G., Ribera, J., Burgert, I., 2021: Enhanced mechanical energy conversion with selectively decayed wood. Science Advances, 7(11): eabd9138, https://doi.org/10.1126/sciadv.abd9138
  • Tozluoğlu, A., Çöpür, Y., Özyürek, Ö., Çıtlak, S., 2015: Nanoselüloz üretim teknolojisi. Türkiye Ormancılık Dergisi, 16(2): 203-219, https://doi.org/10.18182/tjf.09718
  • Tressler, J.F., Alkoy, S., Newnham, R.E., 1998: Piezoelectric sensors and sensor materials. Journal of Electroceramics, 2(4): 257-272, https://doi.org/10.1023/A:1009926623551
  • Tuukkanen, S., Rajala, S., 2018: Nanocellulose as a Piezoelectric Material, Piezoelectricity—Organic and Inorganic Materials and Applications. InTech Open: London, UK. https://doi.org/10.5772/intechopen.77025
  • Yu, Z., Gong, H., Xu, J., Li, Y., Zeng, Y., Liu, X., Tang, D., 2022: Exploiting photoelectric activities and piezoelectric properties of NaNbO3 semiconductors for point-of-care immunoassay. Analytical Chemistry, 94(7): 3418-3426, https://doi.org/10.1021/acs.analchem.2c00066
  • Zhu, M., Liu, Q., Wong, W.Y., Xu, L., 2025: Advancements in carbon‐based piezoelectric materials: Mechanism, classification, and applications in energy science. Advanced Materials, 2419970, https://doi.org/10.1002/adma.202419970
There are 28 citations in total.

Details

Primary Language English
Subjects Forest Biometrics
Journal Section Review Article
Authors

Zeynep Eda Özan 0000-0003-1119-4501

Gökhan Gündüz 0000-0002-2602-2211

Deniz Aydemir 0000-0002-7484-2126

Submission Date July 10, 2025
Acceptance Date September 29, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 1 Issue: 2

Cite

APA Özan, Z. E., Gündüz, G., & Aydemir, D. (2025). Exploring Wood as a Natural Piezoelectric Material: A Review of Historical Development, Mechanisms, and Applications. Forest and Wood Science, 1(2), 1-7.