Research Article
BibTex RIS Cite

Poly(4-pyridinyl-3´-methacryloyloxystyryl ketone-co-2-hydroxypropyl methacrylate): Synthesis, Characterization, Thermal and Electrical properties

Year 2019, Volume: 31 Issue: 1, 9 - 16, 27.09.2019

Abstract

Synthesis of related chalcone, 4-pyridinyl-3´-hydroxystyryl ketone, was carried out from the reaction of 4-acetyl pyridine and 3-hydroxybenzaldehyde in an aqueous solution of NaOH. The related methacrylate monomer was obtained from acylation of 4-pyridinyl-3´-hydroxystyryl ketone with methacryloyl chloride in the cold. The copolymer of 4-pyridinyl-3´- methacryloyloxystyryl ketone and 2-hydroxypropyl methacrylate was prepared by free radical polymerization in presence of AIBN at 70 oC. FTIR, 1H-NMR and 13C-APT spectroscopic techniques were used for structural characterization of the products. Thermal characterization of the copolymer was carried out using DSC and TGA techniques. DSC curve shows that this copolymer has a glass transition temperature of 82 oC. The TGA curve shows that decomposition given volatile product started at 210 ° C and a residue of 16.4% left at 500 °C. Dielectric constant (ε´) of the copolymer decreased rapidly from 3.82 to 2.62 with increasing frequency in the range of 100-700 Hz, and after this frequency ε´ quantity remained nearly constant at a value such as 2.60. The dielectric loss (´´) decreased rapidly from 0.23 to 0.03 with increasing frequency in range of 100-1130 Hz, and after that ´´value remained nearly constant in range of 1130-5000Hz. ε´ Value of the copolymer increased only from 2.57 to 3.03 with increasing temperature from 298 K to 385 K. In the same temperature range, the ´´ value increased from 0.02 to 0.20. The ac conductivity of the copolymer increases from 2.40x10-10 S/cm to 64.57x10-10 S/cm as the frequency increased from 100 Hz to 5000 Hz at room temperature. The ac conductivity increases slightly with increasing temperature, 1.36x10-9 S/cm at 298 K, and 1.69x10-9 S/cm at 385 K.

References

  • [1] Yerragunta V, Kumaraswamy T, Suman D, Anusha V, Patil , Samhitha T. A review on Chalcones and its importance. Pharma.Tutor 2013; 1(2): 54-59.[2] Chavan B B, Gadekar A S, Mehta P P, Vawhal P K, Kolsure A K, Chabukswar A R. Synthesis and Medicinal Significance of Chalcones- A Review. Asian J Biomed Pharma Sci 2013; 6(56): 01-07.[3] Rusu E, Oncius M. Polycondensates of 2´-(Chalcone-4-Oxy)-Ethyl-3,5-Diaminobenzoate with Some Aromatic Dicarboxylic Acids, JMS Part A: Pure and Appl Chem 2005; 42: 1025–1036.[4] Kaniappan K, Murugavel SC. Synthesis and Characterization of Photosensitive Phosphorus Based Polymers Containing ,β-Unsaturated Ketones in the Main Chain. JMS Part A: Pure and Appl Chem 2005; 42: 1589–1602.[5] Selvam P, Babu KC, Penlidis A, Nanjundan Dr S. Copolymers of4‐(3′,4′‐Dimethoxycinnamoyl)phenyl Acrylate and MMA: Synthesis, Characterization, Photocrosslinking Properties, and Monomer Reactivity Ratios. JMS Part A: Pure and Appl Chem 2004; A41(7): 791–809.[6] Faghihi K, Hajibeygi M, Shabanian M. Photosensitive and Optically Active Poly(amide-imide)s Based on N,N- (pyromellitoyl)-bis-L-amino acid and Dibenzalacetone Moiety in the Main Chain: Synthesis and Characterization, . JMS Part A: Pure and Appl Chem 2010; 47: 144-153. [7] Rehab A. Studies of Photoreactive Poly(Norbornene Derivatives) Bearing Chalcone Units, . JMS Part A: Pure and Appl Chem 2003; A40(7): 689-703. [8] Perundevi TS, Jonathan DR, Kothai S. Synthesis And Characterization of Certain Photocrosslinkable Random Copolyesters With Bischalcone Moiet. Int J Adv Research 2015; 3(3): 1147-1154.[9] Nanjundan S, Selvamalar CSJ. Synthesis, Characterization and Photocrosslinking Properties of Poly(1-(4-Methacrylamidophenyl)-1-(4-nitrophenyl)prop-1-en-3-one. JMS Part A: Pure and Appl Chem 2006; 43: 1189-1203.[10] Balaji R, Nanjundan S. Studies on Photosensitive Homopolymer and Copolymers Having a Pendant Photocrosslinkable Functional Group. J Appl Polym Sci 2002; 86: 1023–1037.[11] Tamilvanan M, Pandurangan A, Subramanian K, Reddy BSR. Synthesis and characterization of mono- and di-methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety. Polym Adv Technol 2008; 19: 1218–1225.[12] Balajia R, Grande D, Nanjundan S. Photoresponsive polymers having pendant chlorocinnamoyl moieties: synthesis, reactivity ratios and photochemical properties. Polymer 2004; 45: 1089–1099.[13] Rehab A, Salahuddin N. Photocrosslinked polymers based on pendant extended chalcone as photoreactive moieties. Polymer 1999; 40(9): 2197-2207.[14] Ayaz N, Bezgin F, Demırellı K. Polymers Based on Methacrylate Bearing Coumarin Side Group: Synthesis via Free Radical Polymerization,Monomer Reactivity Ratios, Dielectric Behavior, and Thermal Stabilities. ISRN Polym. Sci., Article 2012; 1-13. ID 352759, doi:10.5402/2012/352759. [15] Pandey AS, Dhar R, Achalkumar AS, Yelamaggad CV. (2011). Thermodynamic, optical and dielectric properties of the twisted grain boundary phases of the homologous series of 4-n-alkyloxy-4′-(cholesteryloxycarbonyl-1-butyloxy) chalcone. Liquid Crystals 2011; 38(6): 775–784.[16] Aygün EN, Coşkun M. Poly[4-pyridinyl-4´-(2-methacryloyloxyethoxy)styryl ketone-co-2-hydroxypropyl methacrylate]: Synthesis, Characterization, Thermal and Electrical properties, and Photocrosslinking behavior, El-Cezerî J. Sci. Eng. 2018; 5(8): 24-34).[17] Tamilvanan M, Pandurangan A, Reddy BSR, Subramanian K. Synthesis, characterization and properties of photoresponsive polymers comprising photocrosslinkable pendant chalcone moieties. Polym Int 2007; 56: 104–111.[18] Coşkun M, Seven P. Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization. React Funct Polym 2011; 71: 395-401. [19] CROW logo Polymer Properties Database, Copyright © 2015 polymerdatabase.com.[20] http://www.polysciences.com/skin/frontend/default/polysciences/images/logo.png, CAS#: 25703-79-1. [21] So HH, Cho JW, Sahoo N G. Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 2007; 43: 3750–3756.[22] Dutta P, Biswas S, Biswas GM, De S K, Chatterjee S. The dc and ac Conductivity of Polyaniline and Polyalcohol Blends. Synth Met 2000; 122: 455-461.[23] Harun M H, Saion E, Kassim A, Hussain M., Mustafa IS, Ali Omer, MA. Temperature Dependence of AC Electrical Conductivity of PVA-PPy-FeCl3 Composite Polymer Films. Malaysian Polym J (MPJ) 2008; 3(2): 24-31.[24] Pradhan DK, Choudhary RNP, Samantaray BK. Studies of Dielectric Relaxation and AC Conductivity Behavior of Plasticized Polymer Nanocomposite Electrolytes. Int J Electrochem Sci 2008; 3: 597–608.[25] Olayo MG, Cruz G J, López S, Juan Morales J, Olayo R. Conductivity and Activation Energy in Polymers Synthesized by Plasmas of Thiophene. J. Mex. Chem. Soc.2010; 54(1): 18-23.[26] Al-Ramdin Y, Zihlif A M, Elimat Z M, Ragosta G. Dielectric and AC Electrical Conductivity of Polycarbonate Kaolinite Composites. J Thermoplast Comps Materials 2009; 22: 617-632.

Poli(4-piridinil-3´-metakriloiloksistiril keton-ko-2-hidroksipropil metakrilat) : Sentezi, Karakterizasyonu, Termal ve Elektriksel Özellikleri

Year 2019, Volume: 31 Issue: 1, 9 - 16, 27.09.2019

Abstract

İlgili kalkonun sentezi,
4-piridinil-3´-hidroksistiril keton, sulu NaOH çözeltisinde 4-asetil piridin
ile 3-hidroksibenzaldehitin reaksiyonu ile gerçekleştirildi. Yan zincirinde
kalkon yapısı taşıyan bir metakrilat monomeri, 4-piridinil-3´-hidroksistiril ketonun
metakriloil klorürle soğuktaki reaksiyonundan elde edildi.
4-Piridinil-3´-metakriloiloksistiril keton ve 2-hidroksipropil metakrilatın
kopolimeri 70
oC de AİBN yanında serbest radikal polimerizasyonuyla
elde edildi. Ürünlerin yapısal karakterizasyonu FTIR,
1H-NMR ve 13C-APT
teknikleriyle yapıldı. Kopolimerin termal karakterizasyonu için DSC ve TGA
teknikleri kullanıldı. DSC eğrisi kopolimerin 82
oC lik bir camsı
geçiş sıcaklığına sahip olduğunu gösterdi. TGA eğrisi uçucu madde veren
parçalanmanın 210
oC de başladığını ve 500 oC de %16.4
kadar bir artık bıraktığını gösterdi. Kopolimerin dielektrik sabiti (
ε´), 100-700 Hz aralığında artan frekansla 3.82´den 2.62´ye düştü ve bu
frekanstan sonra 2.60 gibi bir değerde yaklaşık sabit kaldı. Dielektrik kaybı (
e´´) da 100-1130 Hz frekans aralığında 0.23 den 0.03 değerine hızlı bir
düşüş gösterdi ve sonra
e´´değeri 1130-5000 Hz
aralığında yaklaşık sabit kaldı. Kopolimerin
 ε´ değeri, sıcaklık
298 K´den 385 K´e artarken sadece 2.57´dan 3.03 çıktı. Aynı sıcaklık aralığında
e´´değeri ise 0.02´den 0.20´e
yükseldi. Kopolimerin AC iletkenliği oda sıcaklığında frekansın 100 Hz´den 5000
Hz´e çıkmasıyla 2.40x10
-10 S/cm´den 64.57x10-10 S/cm´e
arttı. AC iletkenliği sıcaklık artışıyla çok az arttı (298 K´de 1.36x10
-9
S/cm ve 385 K´de 1.69x10
-9 S/cm ).
İlgili kalkonun sentezi, 4-piridinil-3´-hidroksistiril keton, sulu NaOH çözeltisinde 4-asetil piridin ile 3-hidroksibenzaldehitin reaksiyonu ile gerçekleştirildi. Yan zincirinde kalkon yapısı taşıyan bir metakrilat monomeri, 4-piridinil-3´-hidroksistiril ketonun metakriloil klorürle soğuktaki reaksiyonundan elde edildi. 4-Piridinil-3´-metakriloiloksistiril keton ve 2-hidroksipropil metakrilatın kopolimeri 70 oC de AİBN yanında serbest radikal polimerizasyonuyla elde edildi. Ürünlerin yapısal karakterizasyonu FTIR, 1H-NMR ve 13C-APT teknikleriyle yapıldı. Kopolimerin termal karakterizasyonu için DSC ve TGA teknikleri kullanıldı. DSC eğrisi kopolimerin 82 oC lik bir camsı geçiş sıcaklığına sahip olduğunu gösterdi. TGA eğrisi uçucu madde veren parçalanmanın 210 oC de başladığını ve 500 oC de %16.4 kadar bir artık bıraktığını gösterdi. Kopolimerin dielektrik sabiti (ε´), 100-700 Hz aralığında artan frekansla 3.82´den 2.62´ye düştü ve bu frekanstan sonra 2.60 gibi bir değerde yaklaşık sabit kaldı. Dielektrik kaybı (´´) da 100-1130 Hz frekans aralığında 0.23 den 0.03 değerine hızlı bir düşüş gösterdi ve sonra ´´değeri 1130-5000 Hz aralığında yaklaşık sabit kaldı. Kopolimerin ε´ değeri, sıcaklık 298 K´den 385 K´e artarken sadece 2.57´dan 3.03 çıktı. Aynı sıcaklık aralığında ´´değeri ise 0.02´den 0.20´e yükseldi. Kopolimerin AC iletkenliği oda sıcaklığında frekansın 100 Hz´den 5000 Hz´e çıkmasıyla 2.40x10-10 S/cm´den 64.57x10-10 S/cm´e arttı. AC iletkenliği sıcaklık artışıyla çok az arttı (298 K´de 1.36x10-9 S/cm ve 385 K´de 1.69x10-9 S/cm ).

References

  • [1] Yerragunta V, Kumaraswamy T, Suman D, Anusha V, Patil , Samhitha T. A review on Chalcones and its importance. Pharma.Tutor 2013; 1(2): 54-59.[2] Chavan B B, Gadekar A S, Mehta P P, Vawhal P K, Kolsure A K, Chabukswar A R. Synthesis and Medicinal Significance of Chalcones- A Review. Asian J Biomed Pharma Sci 2013; 6(56): 01-07.[3] Rusu E, Oncius M. Polycondensates of 2´-(Chalcone-4-Oxy)-Ethyl-3,5-Diaminobenzoate with Some Aromatic Dicarboxylic Acids, JMS Part A: Pure and Appl Chem 2005; 42: 1025–1036.[4] Kaniappan K, Murugavel SC. Synthesis and Characterization of Photosensitive Phosphorus Based Polymers Containing ,β-Unsaturated Ketones in the Main Chain. JMS Part A: Pure and Appl Chem 2005; 42: 1589–1602.[5] Selvam P, Babu KC, Penlidis A, Nanjundan Dr S. Copolymers of4‐(3′,4′‐Dimethoxycinnamoyl)phenyl Acrylate and MMA: Synthesis, Characterization, Photocrosslinking Properties, and Monomer Reactivity Ratios. JMS Part A: Pure and Appl Chem 2004; A41(7): 791–809.[6] Faghihi K, Hajibeygi M, Shabanian M. Photosensitive and Optically Active Poly(amide-imide)s Based on N,N- (pyromellitoyl)-bis-L-amino acid and Dibenzalacetone Moiety in the Main Chain: Synthesis and Characterization, . JMS Part A: Pure and Appl Chem 2010; 47: 144-153. [7] Rehab A. Studies of Photoreactive Poly(Norbornene Derivatives) Bearing Chalcone Units, . JMS Part A: Pure and Appl Chem 2003; A40(7): 689-703. [8] Perundevi TS, Jonathan DR, Kothai S. Synthesis And Characterization of Certain Photocrosslinkable Random Copolyesters With Bischalcone Moiet. Int J Adv Research 2015; 3(3): 1147-1154.[9] Nanjundan S, Selvamalar CSJ. Synthesis, Characterization and Photocrosslinking Properties of Poly(1-(4-Methacrylamidophenyl)-1-(4-nitrophenyl)prop-1-en-3-one. JMS Part A: Pure and Appl Chem 2006; 43: 1189-1203.[10] Balaji R, Nanjundan S. Studies on Photosensitive Homopolymer and Copolymers Having a Pendant Photocrosslinkable Functional Group. J Appl Polym Sci 2002; 86: 1023–1037.[11] Tamilvanan M, Pandurangan A, Subramanian K, Reddy BSR. Synthesis and characterization of mono- and di-methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety. Polym Adv Technol 2008; 19: 1218–1225.[12] Balajia R, Grande D, Nanjundan S. Photoresponsive polymers having pendant chlorocinnamoyl moieties: synthesis, reactivity ratios and photochemical properties. Polymer 2004; 45: 1089–1099.[13] Rehab A, Salahuddin N. Photocrosslinked polymers based on pendant extended chalcone as photoreactive moieties. Polymer 1999; 40(9): 2197-2207.[14] Ayaz N, Bezgin F, Demırellı K. Polymers Based on Methacrylate Bearing Coumarin Side Group: Synthesis via Free Radical Polymerization,Monomer Reactivity Ratios, Dielectric Behavior, and Thermal Stabilities. ISRN Polym. Sci., Article 2012; 1-13. ID 352759, doi:10.5402/2012/352759. [15] Pandey AS, Dhar R, Achalkumar AS, Yelamaggad CV. (2011). Thermodynamic, optical and dielectric properties of the twisted grain boundary phases of the homologous series of 4-n-alkyloxy-4′-(cholesteryloxycarbonyl-1-butyloxy) chalcone. Liquid Crystals 2011; 38(6): 775–784.[16] Aygün EN, Coşkun M. Poly[4-pyridinyl-4´-(2-methacryloyloxyethoxy)styryl ketone-co-2-hydroxypropyl methacrylate]: Synthesis, Characterization, Thermal and Electrical properties, and Photocrosslinking behavior, El-Cezerî J. Sci. Eng. 2018; 5(8): 24-34).[17] Tamilvanan M, Pandurangan A, Reddy BSR, Subramanian K. Synthesis, characterization and properties of photoresponsive polymers comprising photocrosslinkable pendant chalcone moieties. Polym Int 2007; 56: 104–111.[18] Coşkun M, Seven P. Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization. React Funct Polym 2011; 71: 395-401. [19] CROW logo Polymer Properties Database, Copyright © 2015 polymerdatabase.com.[20] http://www.polysciences.com/skin/frontend/default/polysciences/images/logo.png, CAS#: 25703-79-1. [21] So HH, Cho JW, Sahoo N G. Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 2007; 43: 3750–3756.[22] Dutta P, Biswas S, Biswas GM, De S K, Chatterjee S. The dc and ac Conductivity of Polyaniline and Polyalcohol Blends. Synth Met 2000; 122: 455-461.[23] Harun M H, Saion E, Kassim A, Hussain M., Mustafa IS, Ali Omer, MA. Temperature Dependence of AC Electrical Conductivity of PVA-PPy-FeCl3 Composite Polymer Films. Malaysian Polym J (MPJ) 2008; 3(2): 24-31.[24] Pradhan DK, Choudhary RNP, Samantaray BK. Studies of Dielectric Relaxation and AC Conductivity Behavior of Plasticized Polymer Nanocomposite Electrolytes. Int J Electrochem Sci 2008; 3: 597–608.[25] Olayo MG, Cruz G J, López S, Juan Morales J, Olayo R. Conductivity and Activation Energy in Polymers Synthesized by Plasmas of Thiophene. J. Mex. Chem. Soc.2010; 54(1): 18-23.[26] Al-Ramdin Y, Zihlif A M, Elimat Z M, Ragosta G. Dielectric and AC Electrical Conductivity of Polycarbonate Kaolinite Composites. J Thermoplast Comps Materials 2009; 22: 617-632.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section FBD
Authors

Ela Nur Aygün This is me 0000-0003-2779-1730

Mustafa Ersin Pekdemir This is me 0000-0002-4979-1777

Mehmet Coşkun 0000-0002-2379-1795

Publication Date September 27, 2019
Submission Date May 7, 2018
Published in Issue Year 2019 Volume: 31 Issue: 1

Cite

APA Aygün, E. N., Pekdemir, M. E., & Coşkun, M. (2019). Poli(4-piridinil-3´-metakriloiloksistiril keton-ko-2-hidroksipropil metakrilat) : Sentezi, Karakterizasyonu, Termal ve Elektriksel Özellikleri. Fırat Üniversitesi Fen Bilimleri Dergisi, 31(1), 9-16.
AMA Aygün EN, Pekdemir ME, Coşkun M. Poli(4-piridinil-3´-metakriloiloksistiril keton-ko-2-hidroksipropil metakrilat) : Sentezi, Karakterizasyonu, Termal ve Elektriksel Özellikleri. Fırat Üniversitesi Fen Bilimleri Dergisi. September 2019;31(1):9-16.
Chicago Aygün, Ela Nur, Mustafa Ersin Pekdemir, and Mehmet Coşkun. “Poli(4-Piridinil-3´-Metakriloiloksistiril Keton-Ko-2-Hidroksipropil Metakrilat) : Sentezi, Karakterizasyonu, Termal Ve Elektriksel Özellikleri”. Fırat Üniversitesi Fen Bilimleri Dergisi 31, no. 1 (September 2019): 9-16.
EndNote Aygün EN, Pekdemir ME, Coşkun M (September 1, 2019) Poli(4-piridinil-3´-metakriloiloksistiril keton-ko-2-hidroksipropil metakrilat) : Sentezi, Karakterizasyonu, Termal ve Elektriksel Özellikleri. Fırat Üniversitesi Fen Bilimleri Dergisi 31 1 9–16.
IEEE E. N. Aygün, M. E. Pekdemir, and M. Coşkun, “Poli(4-piridinil-3´-metakriloiloksistiril keton-ko-2-hidroksipropil metakrilat) : Sentezi, Karakterizasyonu, Termal ve Elektriksel Özellikleri”, Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 31, no. 1, pp. 9–16, 2019.
ISNAD Aygün, Ela Nur et al. “Poli(4-Piridinil-3´-Metakriloiloksistiril Keton-Ko-2-Hidroksipropil Metakrilat) : Sentezi, Karakterizasyonu, Termal Ve Elektriksel Özellikleri”. Fırat Üniversitesi Fen Bilimleri Dergisi 31/1 (September 2019), 9-16.
JAMA Aygün EN, Pekdemir ME, Coşkun M. Poli(4-piridinil-3´-metakriloiloksistiril keton-ko-2-hidroksipropil metakrilat) : Sentezi, Karakterizasyonu, Termal ve Elektriksel Özellikleri. Fırat Üniversitesi Fen Bilimleri Dergisi. 2019;31:9–16.
MLA Aygün, Ela Nur et al. “Poli(4-Piridinil-3´-Metakriloiloksistiril Keton-Ko-2-Hidroksipropil Metakrilat) : Sentezi, Karakterizasyonu, Termal Ve Elektriksel Özellikleri”. Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 31, no. 1, 2019, pp. 9-16.
Vancouver Aygün EN, Pekdemir ME, Coşkun M. Poli(4-piridinil-3´-metakriloiloksistiril keton-ko-2-hidroksipropil metakrilat) : Sentezi, Karakterizasyonu, Termal ve Elektriksel Özellikleri. Fırat Üniversitesi Fen Bilimleri Dergisi. 2019;31(1):9-16.