Derleme
BibTex RIS Kaynak Göster

Ultrases Dalgasının Cevher Hazırlama ve Zenginleştirme İşlemlerinde Uygulamaları

Yıl 2024, Cilt: 36 Sayı: 1, 11 - 24, 28.03.2024

Öz

Ultrases dalgası, maddesel bir ortama ihtiyaç duyarak insan işitme limitinin üzerindeki frekanslarda yayılan bir ses dalgasıdır. Ultrases dalgası sıvılar içerisinde yayıldığında kavitasyon adı verilen kabarcıklar oluşturur. Kavitasyon kabarcıkları ultrasonik işlemin en önemli özelliğidir. Ultrases dalgası, endüstrinin birçok alanında kullanılmasının yanısıra cevher hazırlama ve zenginleştirme de kullanım alanı bulmuştur. Ultrases dalgası başta flotasyon olmak üzere öğütme, liç, katı-sıvı ayrımı, aglomerasyon, flokülasyon gibi cevher hazırlama ve zenginleştirme proseslerinde kullanılmıştır. Literatürde ultrasonik işlem farklı cihazlar, frekanslar, yöntemler kullanılarak flotasyonun değişik aşamalarında ve farklı minerallerin flotasyonunda uygulanmıştır. Flotasyon ile yapılan çalışmaların çoğu kömür flotasyonu üzerine yapılmıştır. Bu çalışmada ultrases dalgalarının özellikleri detaylı olarak incelenmiştir. Ayrıca, literatürde yer alan ultrasonik işlemin cevher hazırlama ve zenginleştirme proseslerinde kullanımı ile ilgili daha önceki çalışmalar derlenmiş ve sonuçları yorumlanmıştır.

Kaynakça

  • Erdemoğlu M, Göktaş M. Mermer artıklarından katma değeri yüksek seramik tozlarının üretimi. Mermer ve Çevre Çalıştayı, Muğla, Turkey ,2018
  • Fuchs F. Ultrasonic cleaning: fundamental theory and application, www. blackstone-ney. com/pdfs, 2002
  • Duran K, Perinçek D, Körlü E, Bahtiyari M. Ultrason teknolojisinin tekstilde kullanım olanakları. Tekstil ve konveksiyon 2007; 162- 166.
  • Celik MS. Effect of ultrasonic treatment on the floatability of coal and galena. Sep. Sci. Technol. 1989; 24:1159–1166,
  • Ozkan ŞG, Kuyumcu, HZ. Investigation of mechanism of ultrasound on coal flotation. Int. J. Miner. Process. 2006; 81:201–203.
  • Ozkan ŞG, Kuyumcu HZ. Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation. Ultrason. Sonochem. 2007; 14: 639–645,
  • Ozkan,ŞG. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel 2012; 93:576–580
  • Ozkan ŞG. Further investigations on simultaneous ultrasonic coal flotation. Minerals 2017; 7: 177
  • Xu M, Xing Y, Gui X, Cao Y, Wang D, Wang L. Effect of ultrasonic pretreatment on oxidized coal flotation, Energy Fuels 2017;31: 14367–14373, 2017.
  • Ghadyani M, Noaparast S, Tonkaboni SZ. A study on the effects of ultrasonic irradiation as pretreatment method on high-ash coal flotation and kinetics a study on the effects of ultrasonic irradiation as pretreatment method on high-ash coal flotation and kinetics. Int J Coal Prep Util 2018;38: 374-391.
  • Peng Y, Mao Y, Xia W, Li Y. Ultrasonic flotation cleaning of high-ash lignite and its mechanism. Fuel 2018;220:558–566
  • Mao Y, Peng Y, Bu X, Xie G, Wu E, Xia W. Effect of ultrasound on the true flotation of lignite and its entrainment behavior. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2018;40: 940–950.
  • Mao Y, Xia W, Peng Y, Xie G. Ultrasonic-assisted flotation of fine coal: A review. Fuel Process. Technol. 2019a; 195: 106150,
  • Mao Y, Chen Y, Bu X, Xie G. Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force. Fuel 2019b ;256:115938.
  • Mao Y, Bu X, Peng Y, Tian F, Xie G. Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel 2020;259: 116270, 2020.
  • Chen Y, Xie G, Chang J, Grundy J, Liu Q. A study of coal aggregation by standing-wave ultrasound. Fuel 2019;248: 38–46, 2019.
  • Chen Y, Truong VNT, Bu X, Xie G. A review of effects and applications of ultrasound in mineral flotation. Ultrason. Sonochem.2020; 60: 104739, 2020.
  • Kopparthi P, Balamurugan S, Mukherjee AK. Effect of ultrasonic pre-treatment time on coal flotation. International Journal of Coal Preparation & Utilization 2020;40: 807-823, 2020.
  • Videla AR, Morales R, Saint-Jean T, Gaete L, Vargas Y, Miller JD. Ultrasound treatment on tailings to enhance copper flotation recovery. Miner. Eng. 2019;99: 89–95,
  • Önal G, Özer M, Arslan F Sedimentation of clay in ultrasonic medium. Miner. Eng 2003;16(2):129–134,
  • Altun NE, Hwang JY, Hicyilmaz C. Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. Int. J. Miner. Process.2009; 91(1-2): 1–13.
  • Zbik MS, Du, J, Pushkarova RA, Smart R St C. Observation of gaseous films at solid–liquid interfaces: Removal by ultrasonic action. J. Colloid Interface Sci. 2009;336(2) :616–623.
  • Alp İ. Yüksek Frekanslı Ses Dalgalarının Cevher Zenginleştirmede Kullanılabilirliğinin Araştırılması. Dokora Tezi, Eskişehir Osman Gazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 1998.
  • Leighton TG. The Acoustic Bubble, Academic Press, London, 1994.
  • Ashokkumar M. The characterization of acoustic cavitation bubbles – an overview. Ultrason. Sonochem. 2011; 18:864–872
  • Ambedkar B. Ultrasonic Coal-Wash for De-Ashing and De-Sulfurization: Experimental Investigation and Mechanistic Modeling. Springer-Verlag, Berlin Heidelberg, 2012
  • Suslick KS, Kirk-Othmer encyclopedia of chemical technology. J. Wiley & Sons: New York, 26, 517-541, 1998.
  • Mason TJ. Chemistry with ultrasound, Society of Chemical Industry,London, , 1990;195.
  • Yasui K, Tuziuti T, Iida Y. Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrason. Sonochem. 2005;12 (1): 43–51,
  • Yerkovic C, Menacho J, Gaete L. Exploring the ultrasonic comminution of copper ores. Minerals engineering 1993; 6, (6):607-617
  • Gaete-Garreton L, Vargas-Hermandez Y, Velasquez-Lambert C. Application of ultrasound in comminution. Ultrasonics 2000; 38: 1-8, 345-352,
  • Kang W, Xun H, Hu J. Study of the effect of ultrasonic treatment on the surface composition and the flotation performance of high-sulfur coal. Fuel Process. Technol. 2008;89(12):1337–1344.
  • Toraman ÖY. Experimental investigations of preparation of calcite particles by ultrasonic treatment. Physicochemical Problems of Mineral Processing 2017;53(2):859-868, 2017.
  • Singh B. Ultrasonically assisted rapid solid-liquid separation of fine clean coal particles. Minerals engineering, 1999;12(4): 437-443.
  • Swamy K, Rao A, Narasimhan K. Acoustics aids dewatering. Ultrasonics 1983;21(6):280-281,
  • Riera-Franco de Sarabia E, Gallego-juarex JA, Rodrigez-Corral G, Elvira-Segura L, Gonzalez-Gomez I. Application of high-power ultrasound to enhance fluid solid particle separation processes. Ultrasonics 2000;38(38):642-646,
  • Burat F, Sirkeci AA, Önal G. Improved fine coal dewatering by ultrasonic pretreatment and dewatering aids. Mineral Processing and Extractive Metallurgy Review 2014;36, (2):129–135
  • Demir I, Gungoren C,.Yücel Y, Ünver M, Çinku IK, Özkan Ş.G. Ultrasound supported flocculation of borate tailings with differently charged flocculants. Boron, 2021;6 (3) :348–58. https://doi.org/10.30728/boron.971892
  • Ding S, Pan F, Zhou S, Bu X, Alheshibri M. Ultrasonic-assisted flocculation and sedimentation of coal slime water using the Taguchi method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023;45:4, 10523-10536, https://doi.org/ 10.1080/15567036.2023.2247363
  • Özkan A, Eşmeli K. Improvement of Colemanite Flocculation with Collectors by Ultrasound Treatment. Part. Sci. Technol 2022; 40:272–280.
  • Özkan A, Eşmeli K. Use of ultrasonic treatment as a pre-phase in the shear flocculation process. Ultrasonics 2023;107052
  • Şahinoğlu E, Uslu T. Increasing coal quality by oil agglomeration after ultrasonic treatment. Fuel Process. Technol. 2013a ;116: 332–338.
  • Eşmeli K. Improvement of lignite oil agglomeration by ultrasound process using waste engine oil. Particulate Science and Technology 2023; 41:544–554.
  • Eşmeli K. The effect of ultrasound treatment on oil agglomeration of barite. Mineral Processing and Extractive Metallurgy Review 2023;44: 189–200.
  • Slaczka AS. Effect of ultrasound on ammonium leaching of zinc from galmei ore. Ultrasonics. 1986;24(1):53-55.
  • Swamy KM, Sukla LB, Narayana KL, Kar RN, Panchanadikar VV. Use of ultrasound in microbial leaching of nickel from laterites. Ultrasonics Sonochemistry 1995;2 (1): 5-9.
  • Turan MD, Silva JP, Sâri ZA, Nadirov R,Toro, N. Dissolution of chalcopyrite in presence of chelating agent and hydrogen peroxide. T. Indian. I. Metals. 2022; 75 (1): 273–280.
  • He HP, Cao J, Duan N. Synergistic effect between ultrasound and fierce mechanical activation towards mineral extraction: a case study of ZnO ore. Ultrason. Sonochem. 2018;48 :163–170.
  • Zhang LB, Li HY, Peng JH, Srinivasakannan C, Li SW, Yin SH. Microwave and ultrasound augmented leaching of complicated zinc oxide ores in ammonia and ammonium citrate solutions. Metals-Basel. 2017;7 (6): 216
  • Cetintas S, Bingol D. Performance evaluation of leaching processes with and without ultrasound effect combined with reagent-assisted mechanochemical process for nickel recovery from Laterite: Process optimization and kinetic evaluation. Miner. Eng. 2020;157: 106562.
  • Yin SH, Pei JN, Jiang F, Li SW, Peng JH, Zhang LB, Ju SH, Srinivasakannan C. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution. Ultrason. Sonochem. 2018; 41: 156–162,
  • Hu YT, Guo P, Wang SX, Zhang LB. Leaching kinetics of antimony from refractory gold ore in alkaline sodium sulfide under ultrasound. Chem. Eng. Res. Des. 2020;164: 219–229.
  • Ladola YS, Chowdhury S, Roy SB, Pandit AB. Application of cavitation in uranium leaching. Desalin. Water. Treat. 2014;52 (1–3): 407–414.
  • Ma JY, Zhang YF, Qin YH, Wu ZK, Wang TL, Wang CW. The leaching kinetics of K-feldspar in sulfuric acid with the aid of ultrasound. Ultrason. Sonochem. 2017; 35:304–312.
  • Cilek EC, Ciftci H, Karagoz SG, Tuzci G. Extraction of silver from a refractory silver ore by sono-cyanidation. Ultrason. Sonochem. 2020;63: 104965.
  • Wang X, Srinivasakannan C, Xin-hui D, Jin-hui P, Da-jin Y, Shao-hua J. Leaching kinetics of zinc residues augmented with ultrasound. Separation and Purification Technology 2013;115: 66-72.
  • Djendova S, Mehandjiski V. Study of the effects of acoustic vibration conditioning of collector and frother on flotation of sulphide ores. International journal of mineral processing 1992;34(3): 205-217.
  • Özkan ŞG. Beneficiation of magnesite slimes with ultrasonic treatment. Minerals Engineering 2002;15: 99-101.
  • Misra M, Raichur AM, Lan AP. Improved flotation of arsenopyrite by ultrasonic pretreatment. Miner. Metal. Process. 2003;20 (2): 93–96,
  • Gürpınar G. Ses ötesi dalgaların cevher zenginleştirmede kullanılabilirliğinin araştırılması. Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, 108, 2007.
  • Cilek EC, Ozgen S. Effect of ultrasound on separation selectivity and efficiency of flotation. Miner. Eng. 2009;22: 1209–1217.
  • Cilek EC, Ozgen S. Improvement of the flotation selectivity in a mechanical flotation cell by ultrasound. Sep. Sci. Technol. 2010; 45:572–579.
  • Özkan Ş.G, Güngören C. Enhancement of colemanite flotation by ultrasonic pre-treatment. Physicochem. Probl. Miner. Process. 2012;48: 455−462.
  • Kursun H. A study on the utilization of ultrasonic pretreatment in Zinc flotation. Sep. Sci. Technol. 2014;49: 2975–2980.
  • Güngören C, Erbek TM, Özdemir O, Özkan ŞG. Effect of simultaneous ultrasonic treatment on quartz-amine flotation system. XVI Balkan Mineral Processing Congress, Belgrade, Serbia, 2015;483-490.
  • Videla AR, Morales R, Saint-Jean T, Gaete L, Vargas Y, Miller JD. Ultrasound treatment on tailings to enhance copper flotation recovery. Miner. Eng. 2016;99: 89–95.
  • Cao QB, Cheng JH, Feng QC, Wen SM, Luo B. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technol. 2017;311: 390–397.
  • Barma SD, Baskey PK, Rao DS, Sahu SN. Ultrasonic-assisted flotation for enhancing the recovery of flaky graphite from low-grade graphite ore. Ultrason. Sonochem. 2019; 56:386–396,
  • Yin W, Cai L, Ma Y, Wang Y. Mechanism of ultrasonic cavitation to improve the effect of siderite on quartz flotation. Physicochem. Probl. Miner. Process. 2023; 59(2): 165930,
  • Liao Y, Zhao G, Feng B, Yan H, Wu H, Hu W, Zhu D, Qiu T. Application of ultrasonic pre-treatment for flotation separation pyrrhotite from chlorite. Colloid Surf. A 2023;669: 131507.
  • Zhou Z A, Zheng X, Finch JA, Hu H, Rao SR. Role of hydrodynamic cavitation in fine particle flotation. International Journal of Mineral Processing 1997;51: 139-149.
  • Fan M, Tao D, Honaker R, Luo Z. Nanobubble generation and its applications in froth flotation (part iv): Mechanical cells and specially designed column flotation of coal. Mining Science and Technology 2010;20 (5): 641-671
  • Li Y, Xia W, Mao Y, Ma G, Peng Y, Xie G. Enhancement in selectivity of coking coal flotation by ultrasound simultaneous Treatment, Current Works in Mineral Processing 2020;2 (1): 1-9.
  • Kang W, Xun H, Kong X, Li M. Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation. Min. Sci. Technol. 2009;19(4): 498–502.
  • Prozorov T, Prozorov R, Suslick KS, High velocity interparticle collisions driven by ultrasound, J. Am. Chem. Soc. 2004;126 (43): 13890–13891.

Applications of Ultrasound Wave in Mineral Preparation and Processing

Yıl 2024, Cilt: 36 Sayı: 1, 11 - 24, 28.03.2024

Öz

Ultrasound, a sound wave that spreads at frequencies above the human hearing limit, requiring a material medium. When ultrasound is propagated in liquids, it creates bubbles called cavitation. Cavitation bubbles are the most important characteristic of ultrasonic processing. In addition to being used in various fields of industry, ultrasonics has also found application in ore preparation and mineral processing. Ultrasound is a sound wave that propagates at frequencies above the limit of human hearing and requires a material medium. When ultrasound is propagated in liquids, it creates bubbles called cavitation. Cavitation bubbles are the most important characteristic of ultrasonic processing. In addition to being used in various fields of industry, ultrasonics has also found application in ore preparation and enrichment. Ultrasonic processing has been used in ore preparation and enrichment processes such as flotation, grinding, leaching, solid-liquid separation, agglomeration, and flocculation. In the literature, ultrasonic processing has been applied to different stages of flotation and flotation of different minerals using different devices, frequencies, and methods. Most of the studies on flotation have been conducted on coal flotation. In this study, the properties of ultrasound waves were studied in detail. In addition, previous studies on the use of ultrasonic processing in ore preparation and enrichment processes in the literature have been compiled and their results have been interpreted.

Kaynakça

  • Erdemoğlu M, Göktaş M. Mermer artıklarından katma değeri yüksek seramik tozlarının üretimi. Mermer ve Çevre Çalıştayı, Muğla, Turkey ,2018
  • Fuchs F. Ultrasonic cleaning: fundamental theory and application, www. blackstone-ney. com/pdfs, 2002
  • Duran K, Perinçek D, Körlü E, Bahtiyari M. Ultrason teknolojisinin tekstilde kullanım olanakları. Tekstil ve konveksiyon 2007; 162- 166.
  • Celik MS. Effect of ultrasonic treatment on the floatability of coal and galena. Sep. Sci. Technol. 1989; 24:1159–1166,
  • Ozkan ŞG, Kuyumcu, HZ. Investigation of mechanism of ultrasound on coal flotation. Int. J. Miner. Process. 2006; 81:201–203.
  • Ozkan ŞG, Kuyumcu HZ. Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation. Ultrason. Sonochem. 2007; 14: 639–645,
  • Ozkan,ŞG. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel 2012; 93:576–580
  • Ozkan ŞG. Further investigations on simultaneous ultrasonic coal flotation. Minerals 2017; 7: 177
  • Xu M, Xing Y, Gui X, Cao Y, Wang D, Wang L. Effect of ultrasonic pretreatment on oxidized coal flotation, Energy Fuels 2017;31: 14367–14373, 2017.
  • Ghadyani M, Noaparast S, Tonkaboni SZ. A study on the effects of ultrasonic irradiation as pretreatment method on high-ash coal flotation and kinetics a study on the effects of ultrasonic irradiation as pretreatment method on high-ash coal flotation and kinetics. Int J Coal Prep Util 2018;38: 374-391.
  • Peng Y, Mao Y, Xia W, Li Y. Ultrasonic flotation cleaning of high-ash lignite and its mechanism. Fuel 2018;220:558–566
  • Mao Y, Peng Y, Bu X, Xie G, Wu E, Xia W. Effect of ultrasound on the true flotation of lignite and its entrainment behavior. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2018;40: 940–950.
  • Mao Y, Xia W, Peng Y, Xie G. Ultrasonic-assisted flotation of fine coal: A review. Fuel Process. Technol. 2019a; 195: 106150,
  • Mao Y, Chen Y, Bu X, Xie G. Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force. Fuel 2019b ;256:115938.
  • Mao Y, Bu X, Peng Y, Tian F, Xie G. Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel 2020;259: 116270, 2020.
  • Chen Y, Xie G, Chang J, Grundy J, Liu Q. A study of coal aggregation by standing-wave ultrasound. Fuel 2019;248: 38–46, 2019.
  • Chen Y, Truong VNT, Bu X, Xie G. A review of effects and applications of ultrasound in mineral flotation. Ultrason. Sonochem.2020; 60: 104739, 2020.
  • Kopparthi P, Balamurugan S, Mukherjee AK. Effect of ultrasonic pre-treatment time on coal flotation. International Journal of Coal Preparation & Utilization 2020;40: 807-823, 2020.
  • Videla AR, Morales R, Saint-Jean T, Gaete L, Vargas Y, Miller JD. Ultrasound treatment on tailings to enhance copper flotation recovery. Miner. Eng. 2019;99: 89–95,
  • Önal G, Özer M, Arslan F Sedimentation of clay in ultrasonic medium. Miner. Eng 2003;16(2):129–134,
  • Altun NE, Hwang JY, Hicyilmaz C. Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. Int. J. Miner. Process.2009; 91(1-2): 1–13.
  • Zbik MS, Du, J, Pushkarova RA, Smart R St C. Observation of gaseous films at solid–liquid interfaces: Removal by ultrasonic action. J. Colloid Interface Sci. 2009;336(2) :616–623.
  • Alp İ. Yüksek Frekanslı Ses Dalgalarının Cevher Zenginleştirmede Kullanılabilirliğinin Araştırılması. Dokora Tezi, Eskişehir Osman Gazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 1998.
  • Leighton TG. The Acoustic Bubble, Academic Press, London, 1994.
  • Ashokkumar M. The characterization of acoustic cavitation bubbles – an overview. Ultrason. Sonochem. 2011; 18:864–872
  • Ambedkar B. Ultrasonic Coal-Wash for De-Ashing and De-Sulfurization: Experimental Investigation and Mechanistic Modeling. Springer-Verlag, Berlin Heidelberg, 2012
  • Suslick KS, Kirk-Othmer encyclopedia of chemical technology. J. Wiley & Sons: New York, 26, 517-541, 1998.
  • Mason TJ. Chemistry with ultrasound, Society of Chemical Industry,London, , 1990;195.
  • Yasui K, Tuziuti T, Iida Y. Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrason. Sonochem. 2005;12 (1): 43–51,
  • Yerkovic C, Menacho J, Gaete L. Exploring the ultrasonic comminution of copper ores. Minerals engineering 1993; 6, (6):607-617
  • Gaete-Garreton L, Vargas-Hermandez Y, Velasquez-Lambert C. Application of ultrasound in comminution. Ultrasonics 2000; 38: 1-8, 345-352,
  • Kang W, Xun H, Hu J. Study of the effect of ultrasonic treatment on the surface composition and the flotation performance of high-sulfur coal. Fuel Process. Technol. 2008;89(12):1337–1344.
  • Toraman ÖY. Experimental investigations of preparation of calcite particles by ultrasonic treatment. Physicochemical Problems of Mineral Processing 2017;53(2):859-868, 2017.
  • Singh B. Ultrasonically assisted rapid solid-liquid separation of fine clean coal particles. Minerals engineering, 1999;12(4): 437-443.
  • Swamy K, Rao A, Narasimhan K. Acoustics aids dewatering. Ultrasonics 1983;21(6):280-281,
  • Riera-Franco de Sarabia E, Gallego-juarex JA, Rodrigez-Corral G, Elvira-Segura L, Gonzalez-Gomez I. Application of high-power ultrasound to enhance fluid solid particle separation processes. Ultrasonics 2000;38(38):642-646,
  • Burat F, Sirkeci AA, Önal G. Improved fine coal dewatering by ultrasonic pretreatment and dewatering aids. Mineral Processing and Extractive Metallurgy Review 2014;36, (2):129–135
  • Demir I, Gungoren C,.Yücel Y, Ünver M, Çinku IK, Özkan Ş.G. Ultrasound supported flocculation of borate tailings with differently charged flocculants. Boron, 2021;6 (3) :348–58. https://doi.org/10.30728/boron.971892
  • Ding S, Pan F, Zhou S, Bu X, Alheshibri M. Ultrasonic-assisted flocculation and sedimentation of coal slime water using the Taguchi method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023;45:4, 10523-10536, https://doi.org/ 10.1080/15567036.2023.2247363
  • Özkan A, Eşmeli K. Improvement of Colemanite Flocculation with Collectors by Ultrasound Treatment. Part. Sci. Technol 2022; 40:272–280.
  • Özkan A, Eşmeli K. Use of ultrasonic treatment as a pre-phase in the shear flocculation process. Ultrasonics 2023;107052
  • Şahinoğlu E, Uslu T. Increasing coal quality by oil agglomeration after ultrasonic treatment. Fuel Process. Technol. 2013a ;116: 332–338.
  • Eşmeli K. Improvement of lignite oil agglomeration by ultrasound process using waste engine oil. Particulate Science and Technology 2023; 41:544–554.
  • Eşmeli K. The effect of ultrasound treatment on oil agglomeration of barite. Mineral Processing and Extractive Metallurgy Review 2023;44: 189–200.
  • Slaczka AS. Effect of ultrasound on ammonium leaching of zinc from galmei ore. Ultrasonics. 1986;24(1):53-55.
  • Swamy KM, Sukla LB, Narayana KL, Kar RN, Panchanadikar VV. Use of ultrasound in microbial leaching of nickel from laterites. Ultrasonics Sonochemistry 1995;2 (1): 5-9.
  • Turan MD, Silva JP, Sâri ZA, Nadirov R,Toro, N. Dissolution of chalcopyrite in presence of chelating agent and hydrogen peroxide. T. Indian. I. Metals. 2022; 75 (1): 273–280.
  • He HP, Cao J, Duan N. Synergistic effect between ultrasound and fierce mechanical activation towards mineral extraction: a case study of ZnO ore. Ultrason. Sonochem. 2018;48 :163–170.
  • Zhang LB, Li HY, Peng JH, Srinivasakannan C, Li SW, Yin SH. Microwave and ultrasound augmented leaching of complicated zinc oxide ores in ammonia and ammonium citrate solutions. Metals-Basel. 2017;7 (6): 216
  • Cetintas S, Bingol D. Performance evaluation of leaching processes with and without ultrasound effect combined with reagent-assisted mechanochemical process for nickel recovery from Laterite: Process optimization and kinetic evaluation. Miner. Eng. 2020;157: 106562.
  • Yin SH, Pei JN, Jiang F, Li SW, Peng JH, Zhang LB, Ju SH, Srinivasakannan C. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution. Ultrason. Sonochem. 2018; 41: 156–162,
  • Hu YT, Guo P, Wang SX, Zhang LB. Leaching kinetics of antimony from refractory gold ore in alkaline sodium sulfide under ultrasound. Chem. Eng. Res. Des. 2020;164: 219–229.
  • Ladola YS, Chowdhury S, Roy SB, Pandit AB. Application of cavitation in uranium leaching. Desalin. Water. Treat. 2014;52 (1–3): 407–414.
  • Ma JY, Zhang YF, Qin YH, Wu ZK, Wang TL, Wang CW. The leaching kinetics of K-feldspar in sulfuric acid with the aid of ultrasound. Ultrason. Sonochem. 2017; 35:304–312.
  • Cilek EC, Ciftci H, Karagoz SG, Tuzci G. Extraction of silver from a refractory silver ore by sono-cyanidation. Ultrason. Sonochem. 2020;63: 104965.
  • Wang X, Srinivasakannan C, Xin-hui D, Jin-hui P, Da-jin Y, Shao-hua J. Leaching kinetics of zinc residues augmented with ultrasound. Separation and Purification Technology 2013;115: 66-72.
  • Djendova S, Mehandjiski V. Study of the effects of acoustic vibration conditioning of collector and frother on flotation of sulphide ores. International journal of mineral processing 1992;34(3): 205-217.
  • Özkan ŞG. Beneficiation of magnesite slimes with ultrasonic treatment. Minerals Engineering 2002;15: 99-101.
  • Misra M, Raichur AM, Lan AP. Improved flotation of arsenopyrite by ultrasonic pretreatment. Miner. Metal. Process. 2003;20 (2): 93–96,
  • Gürpınar G. Ses ötesi dalgaların cevher zenginleştirmede kullanılabilirliğinin araştırılması. Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, 108, 2007.
  • Cilek EC, Ozgen S. Effect of ultrasound on separation selectivity and efficiency of flotation. Miner. Eng. 2009;22: 1209–1217.
  • Cilek EC, Ozgen S. Improvement of the flotation selectivity in a mechanical flotation cell by ultrasound. Sep. Sci. Technol. 2010; 45:572–579.
  • Özkan Ş.G, Güngören C. Enhancement of colemanite flotation by ultrasonic pre-treatment. Physicochem. Probl. Miner. Process. 2012;48: 455−462.
  • Kursun H. A study on the utilization of ultrasonic pretreatment in Zinc flotation. Sep. Sci. Technol. 2014;49: 2975–2980.
  • Güngören C, Erbek TM, Özdemir O, Özkan ŞG. Effect of simultaneous ultrasonic treatment on quartz-amine flotation system. XVI Balkan Mineral Processing Congress, Belgrade, Serbia, 2015;483-490.
  • Videla AR, Morales R, Saint-Jean T, Gaete L, Vargas Y, Miller JD. Ultrasound treatment on tailings to enhance copper flotation recovery. Miner. Eng. 2016;99: 89–95.
  • Cao QB, Cheng JH, Feng QC, Wen SM, Luo B. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technol. 2017;311: 390–397.
  • Barma SD, Baskey PK, Rao DS, Sahu SN. Ultrasonic-assisted flotation for enhancing the recovery of flaky graphite from low-grade graphite ore. Ultrason. Sonochem. 2019; 56:386–396,
  • Yin W, Cai L, Ma Y, Wang Y. Mechanism of ultrasonic cavitation to improve the effect of siderite on quartz flotation. Physicochem. Probl. Miner. Process. 2023; 59(2): 165930,
  • Liao Y, Zhao G, Feng B, Yan H, Wu H, Hu W, Zhu D, Qiu T. Application of ultrasonic pre-treatment for flotation separation pyrrhotite from chlorite. Colloid Surf. A 2023;669: 131507.
  • Zhou Z A, Zheng X, Finch JA, Hu H, Rao SR. Role of hydrodynamic cavitation in fine particle flotation. International Journal of Mineral Processing 1997;51: 139-149.
  • Fan M, Tao D, Honaker R, Luo Z. Nanobubble generation and its applications in froth flotation (part iv): Mechanical cells and specially designed column flotation of coal. Mining Science and Technology 2010;20 (5): 641-671
  • Li Y, Xia W, Mao Y, Ma G, Peng Y, Xie G. Enhancement in selectivity of coking coal flotation by ultrasound simultaneous Treatment, Current Works in Mineral Processing 2020;2 (1): 1-9.
  • Kang W, Xun H, Kong X, Li M. Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation. Min. Sci. Technol. 2009;19(4): 498–502.
  • Prozorov T, Prozorov R, Suslick KS, High velocity interparticle collisions driven by ultrasound, J. Am. Chem. Soc. 2004;126 (43): 13890–13891.
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği (Diğer)
Bölüm FBD
Yazarlar

Kiraz Eşmeli 0000-0001-5699-5199

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 6 Şubat 2024
Kabul Tarihi 25 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 1

Kaynak Göster

APA Eşmeli, K. (2024). Ultrases Dalgasının Cevher Hazırlama ve Zenginleştirme İşlemlerinde Uygulamaları. Fırat Üniversitesi Fen Bilimleri Dergisi, 36(1), 11-24.
AMA Eşmeli K. Ultrases Dalgasının Cevher Hazırlama ve Zenginleştirme İşlemlerinde Uygulamaları. Fırat Üniversitesi Fen Bilimleri Dergisi. Mart 2024;36(1):11-24.
Chicago Eşmeli, Kiraz. “Ultrases Dalgasının Cevher Hazırlama Ve Zenginleştirme İşlemlerinde Uygulamaları”. Fırat Üniversitesi Fen Bilimleri Dergisi 36, sy. 1 (Mart 2024): 11-24.
EndNote Eşmeli K (01 Mart 2024) Ultrases Dalgasının Cevher Hazırlama ve Zenginleştirme İşlemlerinde Uygulamaları. Fırat Üniversitesi Fen Bilimleri Dergisi 36 1 11–24.
IEEE K. Eşmeli, “Ultrases Dalgasının Cevher Hazırlama ve Zenginleştirme İşlemlerinde Uygulamaları”, Fırat Üniversitesi Fen Bilimleri Dergisi, c. 36, sy. 1, ss. 11–24, 2024.
ISNAD Eşmeli, Kiraz. “Ultrases Dalgasının Cevher Hazırlama Ve Zenginleştirme İşlemlerinde Uygulamaları”. Fırat Üniversitesi Fen Bilimleri Dergisi 36/1 (Mart 2024), 11-24.
JAMA Eşmeli K. Ultrases Dalgasının Cevher Hazırlama ve Zenginleştirme İşlemlerinde Uygulamaları. Fırat Üniversitesi Fen Bilimleri Dergisi. 2024;36:11–24.
MLA Eşmeli, Kiraz. “Ultrases Dalgasının Cevher Hazırlama Ve Zenginleştirme İşlemlerinde Uygulamaları”. Fırat Üniversitesi Fen Bilimleri Dergisi, c. 36, sy. 1, 2024, ss. 11-24.
Vancouver Eşmeli K. Ultrases Dalgasının Cevher Hazırlama ve Zenginleştirme İşlemlerinde Uygulamaları. Fırat Üniversitesi Fen Bilimleri Dergisi. 2024;36(1):11-24.