Research Article
BibTex RIS Cite

Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy

Year 2024, Volume: 36 Issue: 2, 59 - 66, 30.09.2024

Abstract

The work presented in this paper reports the shape memory effect characteristics of a CuAlFe high-temperature shape memory alloy (HTSMA) with a new composition and new martensitic transformation temperatures. In this context, casting via a vacuum arc melter produced the Cu-rich ternary CuAlFe high-temperature shape memory alloy (HTSMA). Both DSC and DTA measurement thermograms showed excellent martensitic phase transformation peaks while heating the alloy up and cooling it back. The forward and reverse martensitic phase transformation peaks at different DSC heating/cooling rates had high thermal stability, and the temperature range of these transformations was found above 100 °C between 220-340 °C circa. Therefore, this classifies the alloy as a high-temperature shape memory alloy. Moreover, the formation of the martensite phases, i.e. the microstructural base mechanism for the shape memory effect of the alloy, was confirmed by X-ray diffraction (XRD) pattern obtained at room temperature using CuKα radiation. The findings of this study can be helpful in the high-temperature shape memory alloy-related application areas, in which areas different shape memory properties are highly demanded.

Project Number

FF.23.17

References

  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. International Materials Reviews 2010;55:257–315.
  • Kauffman GB. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. The Chemical Educator 1997;2:1–21.
  • Firstov GS, Van Humbeeck J, Koval YN. High-temperature shape memory alloys. Materials Science and Engineering: A 2004;378:2–10.
  • Duerig TW, Albrecht J, Gessinger GH. A Shape-Memory Alloy for High-Temperature Applications. JOM 1982;34:14–20.
  • Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull 2012;47:2966–8.
  • Hite N, Sharar DJ, Trehern W, Umale T, Atli KC, Wilson AA, et al. NiTiHf shape memory alloys as phase change thermal storage materials.
  • Ley NA, Wheeler RW, Benafan O, Young ML. Characterization of Thermomechanically Processed High-Temperature Ni-Lean NiTi–20 at.% Hf Shape Memory Wires. Shape Memory and Superelasticity 2019;5.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press; 1999.
  • Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Compos B Eng 2019;174:106940.
  • Mazzer EM, Da Silva MR, Gargarella P. Revisiting Cu-based shape memory alloys: Recent developments and new perspectives. J Mater Res 2022;37:162–82.
  • Canbay CA, Karaduman O. The photo response properties of shape memory alloy thin film based photodiode. J Mol Struct 2021;1235:130263.
  • Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B Condens Matter 2019;557:117–25.
  • Wang H, Huang J, Chen S, Yuan X, Zhu J, Xu D, et al. Microstructure and shape memory properties of Cu-Al-Fe alloys with different Al contents made by additive manufacturing technology. Mater Res Express 2022;9:095701.
  • Najah Saud Al-Humairi S. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen; 2020, p. 25.
  • Yang S, Su Y, Wang C, Liu X. Microstructure and properties of Cu-Al-Fe high-temperature shape memory alloys. Mater Sci Eng B Solid State Mater Adv Technol 2014;185:67–73.
  • Raju TN, Sampath V. Influence of aluminium and iron contents on the transformation temperatures of Cu-Al-Fe shape memory alloys. Transactions of the Indian Institute of Metals 2011;64:165–8.
  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR. Thermal aging behavior in Cu-Al-Ni-xCo shape memory alloys. J Therm Anal Calorim 2015;119:1273–84.
  • Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. J Mater Eng Perform 2020;29:7993–8005.
  • Karaduman O, Özkul I, Altın S, Altın E, Baǧlayan, Canbay CA. New Cu-Al based quaternary and quinary high temperature shape memory alloy composition systems. AIP Conf Proc, vol. 2042, American Institute of Physics Inc.; 2018.
  • Karaduman O, Aksu Canbay C, Özkul İ, Aziz Baiz S,, Ünlü N. Production and Characterization of Ternary Heusler Shape Memory Alloy with A New Composition. Journal of Materials and Electronic Devices 2018;1:9–16.
  • Canbay CA, Karaduman O, Özkul İ. Lagging temperature problem in DTA/DSC measurement on investigation of NiTi SMA. Journal of Materials Science: Materials in Electronics 2020;31:13284–91.
  • Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem 1957;29:1702–6.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Transactions of the Indian Institute of Metals 2021.
  • Prado MO, Decorte PM, Lovey F. Martensitic transformation in Cu-Mn-Al alloys. Scripta Metallurgica et Materialia 1995;33.
  • Chentouf SM, Bouabdallah M, Gachon JC, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu-Al-Ni shape memory alloys. J Alloys Compd 2009;470:507–14.
  • Grgurić TH, Manasijević D, Kožuh S, Ivanić I, Anžel I, Kosec B, et al. The effect of the processing parameters on the martensitic transformation of Cu-Al-Mn shape memory alloy. J Alloys Compd 2018;765:664–76.

CuAlFe Yüksek Sıcaklık Şekil Hafızalı Alaşımın Martensitik Dönüşüm Termodinamiği ve Yapı Analizi

Year 2024, Volume: 36 Issue: 2, 59 - 66, 30.09.2024

Abstract

Bu makalede sunulan çalışma, yeni bir bileşime ve yeni martensitik dönüşüm sıcaklıklarına sahip bir CuAlFe yüksek sıcaklık şekil hafızalı alaşımın (YSŞHA) şekil hafıza etkisi özelliklerini rapor etmektedir. Bu kapsamda, bakırca zengin üçlü CuAlFe yüksek sıcaklık şekil hafızalı alaşımı (YSŞHA) vakumlu bir ark eriticide dökümü yapılarak üretildi. Hem DSC hem de DTA ölçüm termogramları, alaşımın ısıtılması ve akabinde soğutulması sırasında mükemmel martensitik faz dönüşüm pikleri gösterdi. Farklı DSC ısıtma/soğutma hızlarında ileri ve ters martensitik dönüşüm piklerinin yüksek ısıl kararlılığa sahip olduğu ve bu dönüşümlerin sıcaklık aralığı 100 °C’nin üzerinde yaklaşık 220-340 °C arasında oluştuğu görüldü. Bundan dolayı alaşım yüksek sıcaklıkta şekil hafızalı alaşım olarak sınıflandırıldı. Ayrıca, martensit fazlarının oluşumu, yani alaşımın şekil hafıza etkisine yönelik mikroyapısal temel mekanizma, CuKa radyasyonu kullanılarak oda sıcaklığında elde edilen X-ışını kırınımı (XRD) deseni ile doğrulandı. Bu çalışmanın bulguları, farklı şekil hafızalı özelliklerin oldukça talep edildiği yüksek sıcaklık şekil hafızalı alaşımlarla ilgili uygulama alanlarında faydalı olabilir.

Supporting Institution

Fırat Üniversitesi, Bilimsel Araştırma Projeleri, FUBAP

Project Number

FF.23.17

Thanks

This research work is financially supported by Firat University Scientific Research Projects (FUBAP): FF.23.17 project number.

References

  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. International Materials Reviews 2010;55:257–315.
  • Kauffman GB. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. The Chemical Educator 1997;2:1–21.
  • Firstov GS, Van Humbeeck J, Koval YN. High-temperature shape memory alloys. Materials Science and Engineering: A 2004;378:2–10.
  • Duerig TW, Albrecht J, Gessinger GH. A Shape-Memory Alloy for High-Temperature Applications. JOM 1982;34:14–20.
  • Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull 2012;47:2966–8.
  • Hite N, Sharar DJ, Trehern W, Umale T, Atli KC, Wilson AA, et al. NiTiHf shape memory alloys as phase change thermal storage materials.
  • Ley NA, Wheeler RW, Benafan O, Young ML. Characterization of Thermomechanically Processed High-Temperature Ni-Lean NiTi–20 at.% Hf Shape Memory Wires. Shape Memory and Superelasticity 2019;5.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press; 1999.
  • Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Compos B Eng 2019;174:106940.
  • Mazzer EM, Da Silva MR, Gargarella P. Revisiting Cu-based shape memory alloys: Recent developments and new perspectives. J Mater Res 2022;37:162–82.
  • Canbay CA, Karaduman O. The photo response properties of shape memory alloy thin film based photodiode. J Mol Struct 2021;1235:130263.
  • Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B Condens Matter 2019;557:117–25.
  • Wang H, Huang J, Chen S, Yuan X, Zhu J, Xu D, et al. Microstructure and shape memory properties of Cu-Al-Fe alloys with different Al contents made by additive manufacturing technology. Mater Res Express 2022;9:095701.
  • Najah Saud Al-Humairi S. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen; 2020, p. 25.
  • Yang S, Su Y, Wang C, Liu X. Microstructure and properties of Cu-Al-Fe high-temperature shape memory alloys. Mater Sci Eng B Solid State Mater Adv Technol 2014;185:67–73.
  • Raju TN, Sampath V. Influence of aluminium and iron contents on the transformation temperatures of Cu-Al-Fe shape memory alloys. Transactions of the Indian Institute of Metals 2011;64:165–8.
  • Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR. Thermal aging behavior in Cu-Al-Ni-xCo shape memory alloys. J Therm Anal Calorim 2015;119:1273–84.
  • Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. J Mater Eng Perform 2020;29:7993–8005.
  • Karaduman O, Özkul I, Altın S, Altın E, Baǧlayan, Canbay CA. New Cu-Al based quaternary and quinary high temperature shape memory alloy composition systems. AIP Conf Proc, vol. 2042, American Institute of Physics Inc.; 2018.
  • Karaduman O, Aksu Canbay C, Özkul İ, Aziz Baiz S,, Ünlü N. Production and Characterization of Ternary Heusler Shape Memory Alloy with A New Composition. Journal of Materials and Electronic Devices 2018;1:9–16.
  • Canbay CA, Karaduman O, Özkul İ. Lagging temperature problem in DTA/DSC measurement on investigation of NiTi SMA. Journal of Materials Science: Materials in Electronics 2020;31:13284–91.
  • Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem 1957;29:1702–6.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Transactions of the Indian Institute of Metals 2021.
  • Prado MO, Decorte PM, Lovey F. Martensitic transformation in Cu-Mn-Al alloys. Scripta Metallurgica et Materialia 1995;33.
  • Chentouf SM, Bouabdallah M, Gachon JC, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu-Al-Ni shape memory alloys. J Alloys Compd 2009;470:507–14.
  • Grgurić TH, Manasijević D, Kožuh S, Ivanić I, Anžel I, Kosec B, et al. The effect of the processing parameters on the martensitic transformation of Cu-Al-Mn shape memory alloy. J Alloys Compd 2018;765:664–76.
There are 26 citations in total.

Details

Primary Language English
Subjects Material Physics, Thermodynamics and Statistical Physics
Journal Section FBD
Authors

Oktay Karaduman 0000-0002-6947-7590

İskender Özkul 0000-0003-4255-0564

Yakup Aydemir 0000-0002-7519-2540

Canan Aksu Canbay 0000-0002-5151-4576

Project Number FF.23.17
Publication Date September 30, 2024
Submission Date February 23, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2024 Volume: 36 Issue: 2

Cite

APA Karaduman, O., Özkul, İ., Aydemir, Y., Aksu Canbay, C. (2024). Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy. Fırat Üniversitesi Fen Bilimleri Dergisi, 36(2), 59-66.
AMA Karaduman O, Özkul İ, Aydemir Y, Aksu Canbay C. Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy. Fırat Üniversitesi Fen Bilimleri Dergisi. September 2024;36(2):59-66.
Chicago Karaduman, Oktay, İskender Özkul, Yakup Aydemir, and Canan Aksu Canbay. “Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy”. Fırat Üniversitesi Fen Bilimleri Dergisi 36, no. 2 (September 2024): 59-66.
EndNote Karaduman O, Özkul İ, Aydemir Y, Aksu Canbay C (September 1, 2024) Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy. Fırat Üniversitesi Fen Bilimleri Dergisi 36 2 59–66.
IEEE O. Karaduman, İ. Özkul, Y. Aydemir, and C. Aksu Canbay, “Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy”, Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 36, no. 2, pp. 59–66, 2024.
ISNAD Karaduman, Oktay et al. “Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy”. Fırat Üniversitesi Fen Bilimleri Dergisi 36/2 (September 2024), 59-66.
JAMA Karaduman O, Özkul İ, Aydemir Y, Aksu Canbay C. Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy. Fırat Üniversitesi Fen Bilimleri Dergisi. 2024;36:59–66.
MLA Karaduman, Oktay et al. “Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy”. Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 36, no. 2, 2024, pp. 59-66.
Vancouver Karaduman O, Özkul İ, Aydemir Y, Aksu Canbay C. Martensitic Transformation Thermodynamic and Structure Analysis of CuAlFe High-Temperature Shape Memory Alloy. Fırat Üniversitesi Fen Bilimleri Dergisi. 2024;36(2):59-66.