Case Report
BibTex RIS Cite

Failure mechanism of a soil slope and stabilization method: a case study

Year 2022, Volume: 1 Issue: 3, 129 - 138, 28.10.2022
https://doi.org/10.5505/fujece.2022.35744

Abstract

In this study, the slope stability problem, which occurred when the projected excavation works of a treatment plant has been
started, has been examined. The aim of this study is to determine the conditions causing the slope failure and to make the slope
stable again. Then, to ensure the stability of the whole slope after all the excavations work in the project area have been
completed. For this purpose, firstly, the topographic features of the slope where the failure took place were determined and a
model of the failure condition was created. Field and laboratory studies were used to obtain the data to be used in slope modeling.
Models reflecting the current situation were analyzed considering static and dynamic conditions and a safe slope design was
created. The analyzes are carried out by Slide V.6.0. software which is based on limit equilibrium methods and Bishop Method
was preferred. As a result, it was determined that the reason of the failure occurred was the change of the soil’s physical and
mechanical parameters due to precipitation. In the slope stability problem considered, the benching method has been proposed
as an improvement method, and additionally, suggestions have been made for the disposal of surface waters by drainage methods.

Thanks

The author would like to thank to Dr. Mesut Gor from Firat University, Faculty of Engineering, Department of Civil Engineering for his contribution to the article and the anonymous reviewers’ comments to improve the paper.

References

  • [1] Zhang J, Kuang M, Zhang Y, Feng T. “Evaluation and analysis of the causes of a landslide and treatment measures during the excavation of a tunnel through a soil-rock interface”. Eng. Fail. Anal., 130, 105784, 2021.
  • [2] Guzzetti F, Carrara A, Cardinali M, Reichenbach P. “Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy”. Geomorphology, 31, 181-216, 1999.
  • [3] García-Rodríguez MJ, Malpica JA, Benito B, Díaz M. “Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression”. Geomorphology, 95, 172-191, 2008.
  • [4] Rai, R. Factors affecting slope failure. Lecture Notes of Chapter 2, 2017.
  • [5] Das BM. Principles of Geotechnical Engineering. Boston: Cengage Learning. 9nd ed. USA, 1994.
  • [6] Akbulut İ, İlker ÇAM, Aksoy T, Çağlan D, Ölmez, T. “Açık ocaklarda şev duraysızlığı ve geriye dönük analizlere bir örnek: Afşin-Elbistan Kışlaköy açık kömür ocağı”. Maden Tetkik ve Arama Dergisi, 147(147), 115-126, 2013.
  • [7] Duncan JM, Wright SG. “Soil strength and slope stability”. New York: John Wiley and Sons, Inc., 2005.
  • [8] Zhang J, Tang WH, Zhang LM. “Efficient probabilistic back-analysis of slope stability model parameters”. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 99-109, 2010.
  • [9] Alemdag S, Kaya A, Karadag,M, Gurocak Z, Bulut F. “Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: an example of the Kalebasi District (NE Turkey)”. Journal of African Earth Sciences, 106, 134-146, 2015.
  • [10] Kaya A, Alemdağ S, Dağ S, Gürocak Z. “Stability assessment of high-steep cut slope debris on a landslide (Gumushane, NE Turkey)”. Bulletin of Engineering Geology and the Environment, 75(1), 89-99, 2016.
  • [11] Alemdağ S. “Toprak dolgulu barajlarda gövde duraylılığının limit denge ve sayısal analiz yöntemleri ile değerlendirilmesi: Türkiye’den bir atık barajı örneği”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 157-173, 2016.
  • [12] Gör M. “Limit denge analizi (Bishop Yöntemi) ile kütle hareketinin mekanizması ve önlem yapısının analizi: Van ili örneği”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 597-608, 2021.
  • [13] Taher NR, Gör M, Aksoy HS, Awlla HA. “Numerical investigation of the effect of slope angle and height on the stability of a slope composed of sandy soil”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 664-675, 2022.
  • [14] Chowdhury R, Zhang S, Flentje P. “Reliability updating and geotechnical back-analysis”. In Advances in geotechnical engineering: The Skempton conference: Proceedings of a three day conference on advances in geotechnical engineering, organised by the Institution of Civil Engineers and held at the Royal Geographical Society, 815-821, London: Thomas Telford Publishing, 2004.
  • [15] Zhang LL, Zhang J, Zhang LM. Tang WH. “Back analysis of slope failure with markov chain monte carlo simulation”. Computers and Geotechnics, 37(7-8), 905-912, 2010.
  • [16] Akbaş B. “Probabilistic slope stability analysis using limit equilibrium, finite element and random finite element methods”. Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, 2015.
  • [17] Zêzere JL, Trigo RM, Trigo IF. “Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation”. Nat. Hazards Earth Syst. Sci., 5, 331-344, 2005.
  • [18] Schmidt KM, Roering JJ, Stock JD, Dietrich WE. Montgomery DR, Schaub T. “The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range”. Can. Geotech. J., 38, 995–1024, 2001.
  • [19] Korup O. “Large landslides and their effect on sediment flux in South Westland, New Zealand”. Earth Surf. Process. Landf., 30, 305-323, 2005.
  • [20] Larsen IJ, Montgomery DR, Korup O. “Landslide erosion controlled by hillslope material”. Nat. Geosci., 3, 247- 51, 2010.
  • [21] Lin CW, Tseng CM, Tseng YH, Fei LY, Hsieh YC, Tarolli P. “Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography”. J. Asian Earth Sci., 62, 389-400, 2013.
  • [22] Rocscience Inc. Slide v. 06 Software. 439 University Ave. Ste. 780, Toronto, Canada, 2014.
  • [23] Bishop AW. “The use of the slip circle in the stability analysis of slopes”. Geotechnique, 5(1), 7-17, 1955.
  • [24] Samtani NC, Nowatzki EA. Soils and Foundations Reference Manual Volume 1. U.S. Department of Transportation, Federal Highway Administration, Washington, D.C. 20590, 2006.
  • [25] Bolgi TV. “Petrol Bölgesi seksiyon ölçmeleri AR/TPO/261 nolu saha ile Reşan- Dodan arası batısındaki sahanın strüktürel etüdleri”. TPAO Arama Grubu, Rapor,162, 52, 1961.
  • [26] Kıratlıoğlu E, Bolgi,T. “AR/TPO/609 nolu Kastel sahası ve civarının jeolojik etüdü. TPAO Arama Grubu”. Rapor no: 220, 36, 1961.
  • [27] Duran O, Şemşir D, Sezgin İ, Perinçek D. “Güneydoğu Anadolu'da Midyat ve Silvan gruplarının stratigrafisi, sedimentolojisi ve petrol potansiyeli”. TPJD Bülteni, Ankara c.1/2, 99-126, 1988.
  • [28] Duran O, Şemşir D, Sezgin L, Perinçek D. “Güneydoğu Anadolu'da Midyat Silvan Gruplarının stratigrafisi, sedimantolojisi ve paleocografyası, paleontolojisi, jeoloji tarihi, rezervuar ve diyajenez özellikleri ve olası petrol potansiyeli”. TPAO Araştırma Merkezi, Rapor No.2563, 1989.
  • [29] Lim TT, Rahardjo H, Chang MF, Fredlund DG. “Effect of rainfall on matric suctions in a residual soil slope”. Can. Geotech. J., 33, 618–628, 1996.
  • [30] Vanapalli SK, Fredlund DG, Pufahl DE, Clifton AW. “Model for the prediction of shear strength with respect to soil suction”. Can. Geotech. J. 33, 379–392, 1996.
  • [31] Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL. “Transient deterministic shallow landslide modelling: requirements for susceptibility and hazard assessment in a GIS framework”. Eng. Geol. 102, 214–226, 2008a.
  • [32] Godt JW, Schulz WH, Baum RL. “Savage,W.Z. Modelling rainfall conditions for shallow landsliding in Seattle, Washington”. In: Baum, R.L., Godt, J.W., High land, L.M.(Eds.), Landslides and Engineering Geology of the Seattle,Washington, area. Geol Soc Am Rev Eng Geol 20, 137–152, 2008b.
  • [33] Godt JW, Baum RL, Lu N. “Landsliding in partially saturated materials”. Geophys. Res. Lett. 36, 2009.
  • [34] Baum RL, Godt JW, Savage WZ. “Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration”. J. Geophys. Res., 2010.
  • [35] Lu N, Godt JW. “Hillslope hydrology and stability”. Cambridge University Press, Cambridge, U.K, 2013.
  • [36] TBDY, Türkiye Bina Deprem Yönetmeliği. T.C. Resmi Gazete; 30364, 2018.
Year 2022, Volume: 1 Issue: 3, 129 - 138, 28.10.2022
https://doi.org/10.5505/fujece.2022.35744

Abstract

References

  • [1] Zhang J, Kuang M, Zhang Y, Feng T. “Evaluation and analysis of the causes of a landslide and treatment measures during the excavation of a tunnel through a soil-rock interface”. Eng. Fail. Anal., 130, 105784, 2021.
  • [2] Guzzetti F, Carrara A, Cardinali M, Reichenbach P. “Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy”. Geomorphology, 31, 181-216, 1999.
  • [3] García-Rodríguez MJ, Malpica JA, Benito B, Díaz M. “Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression”. Geomorphology, 95, 172-191, 2008.
  • [4] Rai, R. Factors affecting slope failure. Lecture Notes of Chapter 2, 2017.
  • [5] Das BM. Principles of Geotechnical Engineering. Boston: Cengage Learning. 9nd ed. USA, 1994.
  • [6] Akbulut İ, İlker ÇAM, Aksoy T, Çağlan D, Ölmez, T. “Açık ocaklarda şev duraysızlığı ve geriye dönük analizlere bir örnek: Afşin-Elbistan Kışlaköy açık kömür ocağı”. Maden Tetkik ve Arama Dergisi, 147(147), 115-126, 2013.
  • [7] Duncan JM, Wright SG. “Soil strength and slope stability”. New York: John Wiley and Sons, Inc., 2005.
  • [8] Zhang J, Tang WH, Zhang LM. “Efficient probabilistic back-analysis of slope stability model parameters”. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 99-109, 2010.
  • [9] Alemdag S, Kaya A, Karadag,M, Gurocak Z, Bulut F. “Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: an example of the Kalebasi District (NE Turkey)”. Journal of African Earth Sciences, 106, 134-146, 2015.
  • [10] Kaya A, Alemdağ S, Dağ S, Gürocak Z. “Stability assessment of high-steep cut slope debris on a landslide (Gumushane, NE Turkey)”. Bulletin of Engineering Geology and the Environment, 75(1), 89-99, 2016.
  • [11] Alemdağ S. “Toprak dolgulu barajlarda gövde duraylılığının limit denge ve sayısal analiz yöntemleri ile değerlendirilmesi: Türkiye’den bir atık barajı örneği”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 157-173, 2016.
  • [12] Gör M. “Limit denge analizi (Bishop Yöntemi) ile kütle hareketinin mekanizması ve önlem yapısının analizi: Van ili örneği”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 597-608, 2021.
  • [13] Taher NR, Gör M, Aksoy HS, Awlla HA. “Numerical investigation of the effect of slope angle and height on the stability of a slope composed of sandy soil”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 664-675, 2022.
  • [14] Chowdhury R, Zhang S, Flentje P. “Reliability updating and geotechnical back-analysis”. In Advances in geotechnical engineering: The Skempton conference: Proceedings of a three day conference on advances in geotechnical engineering, organised by the Institution of Civil Engineers and held at the Royal Geographical Society, 815-821, London: Thomas Telford Publishing, 2004.
  • [15] Zhang LL, Zhang J, Zhang LM. Tang WH. “Back analysis of slope failure with markov chain monte carlo simulation”. Computers and Geotechnics, 37(7-8), 905-912, 2010.
  • [16] Akbaş B. “Probabilistic slope stability analysis using limit equilibrium, finite element and random finite element methods”. Master Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, 2015.
  • [17] Zêzere JL, Trigo RM, Trigo IF. “Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation”. Nat. Hazards Earth Syst. Sci., 5, 331-344, 2005.
  • [18] Schmidt KM, Roering JJ, Stock JD, Dietrich WE. Montgomery DR, Schaub T. “The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range”. Can. Geotech. J., 38, 995–1024, 2001.
  • [19] Korup O. “Large landslides and their effect on sediment flux in South Westland, New Zealand”. Earth Surf. Process. Landf., 30, 305-323, 2005.
  • [20] Larsen IJ, Montgomery DR, Korup O. “Landslide erosion controlled by hillslope material”. Nat. Geosci., 3, 247- 51, 2010.
  • [21] Lin CW, Tseng CM, Tseng YH, Fei LY, Hsieh YC, Tarolli P. “Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography”. J. Asian Earth Sci., 62, 389-400, 2013.
  • [22] Rocscience Inc. Slide v. 06 Software. 439 University Ave. Ste. 780, Toronto, Canada, 2014.
  • [23] Bishop AW. “The use of the slip circle in the stability analysis of slopes”. Geotechnique, 5(1), 7-17, 1955.
  • [24] Samtani NC, Nowatzki EA. Soils and Foundations Reference Manual Volume 1. U.S. Department of Transportation, Federal Highway Administration, Washington, D.C. 20590, 2006.
  • [25] Bolgi TV. “Petrol Bölgesi seksiyon ölçmeleri AR/TPO/261 nolu saha ile Reşan- Dodan arası batısındaki sahanın strüktürel etüdleri”. TPAO Arama Grubu, Rapor,162, 52, 1961.
  • [26] Kıratlıoğlu E, Bolgi,T. “AR/TPO/609 nolu Kastel sahası ve civarının jeolojik etüdü. TPAO Arama Grubu”. Rapor no: 220, 36, 1961.
  • [27] Duran O, Şemşir D, Sezgin İ, Perinçek D. “Güneydoğu Anadolu'da Midyat ve Silvan gruplarının stratigrafisi, sedimentolojisi ve petrol potansiyeli”. TPJD Bülteni, Ankara c.1/2, 99-126, 1988.
  • [28] Duran O, Şemşir D, Sezgin L, Perinçek D. “Güneydoğu Anadolu'da Midyat Silvan Gruplarının stratigrafisi, sedimantolojisi ve paleocografyası, paleontolojisi, jeoloji tarihi, rezervuar ve diyajenez özellikleri ve olası petrol potansiyeli”. TPAO Araştırma Merkezi, Rapor No.2563, 1989.
  • [29] Lim TT, Rahardjo H, Chang MF, Fredlund DG. “Effect of rainfall on matric suctions in a residual soil slope”. Can. Geotech. J., 33, 618–628, 1996.
  • [30] Vanapalli SK, Fredlund DG, Pufahl DE, Clifton AW. “Model for the prediction of shear strength with respect to soil suction”. Can. Geotech. J. 33, 379–392, 1996.
  • [31] Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL. “Transient deterministic shallow landslide modelling: requirements for susceptibility and hazard assessment in a GIS framework”. Eng. Geol. 102, 214–226, 2008a.
  • [32] Godt JW, Schulz WH, Baum RL. “Savage,W.Z. Modelling rainfall conditions for shallow landsliding in Seattle, Washington”. In: Baum, R.L., Godt, J.W., High land, L.M.(Eds.), Landslides and Engineering Geology of the Seattle,Washington, area. Geol Soc Am Rev Eng Geol 20, 137–152, 2008b.
  • [33] Godt JW, Baum RL, Lu N. “Landsliding in partially saturated materials”. Geophys. Res. Lett. 36, 2009.
  • [34] Baum RL, Godt JW, Savage WZ. “Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration”. J. Geophys. Res., 2010.
  • [35] Lu N, Godt JW. “Hillslope hydrology and stability”. Cambridge University Press, Cambridge, U.K, 2013.
  • [36] TBDY, Türkiye Bina Deprem Yönetmeliği. T.C. Resmi Gazete; 30364, 2018.
There are 36 citations in total.

Details

Primary Language English
Subjects General Geology
Journal Section Case Report
Authors

Mustafa Kanık This is me 0000-0002-1019-5249

Publication Date October 28, 2022
Published in Issue Year 2022 Volume: 1 Issue: 3

Cite

APA Kanık, M. (2022). Failure mechanism of a soil slope and stabilization method: a case study. Firat University Journal of Experimental and Computational Engineering, 1(3), 129-138. https://doi.org/10.5505/fujece.2022.35744
AMA Kanık M. Failure mechanism of a soil slope and stabilization method: a case study. FUJECE. October 2022;1(3):129-138. doi:10.5505/fujece.2022.35744
Chicago Kanık, Mustafa. “Failure Mechanism of a Soil Slope and Stabilization Method: A Case Study”. Firat University Journal of Experimental and Computational Engineering 1, no. 3 (October 2022): 129-38. https://doi.org/10.5505/fujece.2022.35744.
EndNote Kanık M (October 1, 2022) Failure mechanism of a soil slope and stabilization method: a case study. Firat University Journal of Experimental and Computational Engineering 1 3 129–138.
IEEE M. Kanık, “Failure mechanism of a soil slope and stabilization method: a case study”, FUJECE, vol. 1, no. 3, pp. 129–138, 2022, doi: 10.5505/fujece.2022.35744.
ISNAD Kanık, Mustafa. “Failure Mechanism of a Soil Slope and Stabilization Method: A Case Study”. Firat University Journal of Experimental and Computational Engineering 1/3 (October 2022), 129-138. https://doi.org/10.5505/fujece.2022.35744.
JAMA Kanık M. Failure mechanism of a soil slope and stabilization method: a case study. FUJECE. 2022;1:129–138.
MLA Kanık, Mustafa. “Failure Mechanism of a Soil Slope and Stabilization Method: A Case Study”. Firat University Journal of Experimental and Computational Engineering, vol. 1, no. 3, 2022, pp. 129-38, doi:10.5505/fujece.2022.35744.
Vancouver Kanık M. Failure mechanism of a soil slope and stabilization method: a case study. FUJECE. 2022;1(3):129-38.